Кратко коллоидная. Теории Юнга и Лапласа Выделение сосудов с помощью морфологических амёб

В 1804 г. Томас Юнг обосновал теорию капиллярных явле­ний на прин­ципе поверхностного натяжения. Он также наблюдал постоян­ство угла смачива­ния жид­ко­стью поверхности твердого тела (краевого угла) и нашел количе­ст­венное соотно­шение, связывающее краевой угол с коэффициен­тами поверхност­ного натяжения со­ответст­вующих межфазных границ. В рав­новесии контактная ли­ния не должна дви­гаться по поверхности твердого тела, а значит, говорил

Где s SV , s SL , s LV - коэффициенты поверхностного натяжения межфазных гра­ниц твер­дое тело – газ (пар), твердое тело – жидкость, жидкость – газ соот­ветст­венно, q - краевой угол. Это соотношение теперь известно как формула Юнга. Эта работа все же не оказала такого влияния на развитие науки в этом направ­лении, какое ока­зала вы­шедшая несколькими месяцами позже статья Лапласа (Pierre Simon Laplace). Это, по-видимому, связано с тем, что Юнг избе­гал ис­пользования математических обозначений, а пытался описывать все сло­весно, отчего его работа кажется запутан­ной и неясной. Тем не менее он счита­ется се­годня одним из основателей количест­венной теории ка­пиллярности.

Явления когезии и адгезии, конденсация пара в жидкость, смачивание твердых тел жидкостями и многие другие простые свойства вещества - все ука­зывало на на­ли­чие сил притяжения, во много раз более сильных, чем гравита­ция, но действую­щих только на очень малых расстояниях между молекулами. Как говорил Лаплас, единст­венное вытекающее из наблюдаемых явлений усло­вие, налагаемое на эти силы, состоит в том, что они «неощутимы на ощутимых расстояниях».

Силы отталкивания создавали больше хлопот. Их наличие нельзя было от­ри­цать - они должны уравновешивать силы притяжения и препятствовать пол­ному разруше­нию вещества, но их природа была совершенно неясной. Во­прос осложнялся двумя следующими ошибочными мнениями. Во-первых, часто счи­талось, что дейст­вующей силой отталкивания является тепло (как правило, мне­ние сторонников тео­рии тепло­рода), поскольку (такова была аргументация) жидкость при нагревании сначала расши­ряется и затем кипит, так что молеку­лы разъединяются на гораздо большие расстояния, чем в твердом теле. Второе ошибочное мнение возникло из уводящего назад к Ньютону представления, со­гласно которому наблюдаемое давле­ние газа происходит вследствие статиче­ского отталкивания между молекулами, а не из-за их столкновений со стенками сосуда, как тщетно доказывал Даниель Бернулли.

На этом фоне было естественно, что первые попытки объяснить капил­ляр­ность или вообще сцепление жидкостей основывались на статических аспек­тах вещества. Ме­ханика была хорошо понимаемой теоретической ветвью науки; термодинамика и кине­тическая теория были еще в будущем. В механиче­ском рассмотрении ключевым было предположение о больших, но короткодей­ст­вующих силах притяжения. По­коящиеся жидкости (в капиллярной ли трубке или вне ее) находятся, очевидно, в равновесии, а потому эти силы притяжения должны уравновешиваться силами от­талкивания. По­скольку о них можно было сказать еще меньше, чем о силах притя­жения, их часто об­ходили молчанием, и, говоря словами Рэлея, «силам притяжения предоставлялось ис­полнять немыс­лимый трюк уравновешивания самих себя». Лап­лас 2 первым удовлетво­ри­тельно разрешил эту проблему , полагая, что силы оттал­кивания (тепловые, как он допускал) можно заменить внутренним давлением, кото­рое действует повсеме­стно в несжимаемой жидкости. (Это предположение приводит време­нами к не­определенности в работах XIX в. в отношении того, что строго пони­мается под «давлением в жидко­сти».) Приведем расчет внутреннего давления по Ла­п­ласу. (Этот вывод ближе к выво­дам Максвелла и Рэлея . Вывод при­водится по .)

Оно должно уравновешивать силы сцепления в жидкости, и Лаплас отож­деств­лял это с силой на единицу площади, которая оказывает сопротивление разделению беско­нечного жидкого тела на два далеко разъединяемых полубес­конечных тела, ог­раничен­ных плоскими поверхностями. Приведенный ниже вывод ближе к выводам Максвелла и Рэлея, чем к оригинальной форме Лапласа, но существенного различия в аргумента­ции нет.

Рассмотрим два полубесконечных тела жидкости со строго плоскими по­верх­но­стями, разделенные прослойкой (толщины l ) пара с пренебрежимо малой плотно­стью (рис. 1), и в каждом из них выделим элемент объема. Первый нахо­дится в верх­нем теле на высоте r над плоской поверхностью нижнего тела; его объем равен dxdydz . Второй находится в нижнем теле и имеет объем , где начало полярных коорди­нат совпа­дает с положением пер­вого элементарного объема. Пусть f (s ) - сила, дейст­вующая между двумя мо­лекулами, разделенными расстоянием s , а d - радиус ее дейст­вия. Поскольку это всегда сила притяжения, имеем

Если - плотность числа молекул в обоих телах, то вертикальная состав­ляю­щая силы взаимодействия двух элементов объема равна

Полная сила притяжения, приходящаяся на единицу площади (положительная вели­чина), есть

(3)

Пусть u (s ) - потенциал межмолекулярной силы:


Интегрируя по частям еще раз, получаем

(6)

Внутреннее давление Лапласа K есть сила притяжения на единицу площади ме­ж­ду двумя плоскими поверхностями при их контакте, т.е. F (0):

(7)

Где - элемент объема, который можно записать как
. Поскольку u (r ) по предположению всюду отрицательно или равно нулю, то K положи­тельно. Лаплас по­лагал, что K велико по сравнению с атмосферным давлением, но пер­вую реали­сти­че­скую численную оценку предстояло сделать Юнгу.

Приведенный выше вывод основан на неявном допущении, что молекулы рас­пре­делены равномерно с плотностью r , т.е. жидкость не обладает различи­мой струк­турой в шкале размеров, соизмеримых с радиусом действия сил d . Без этого предпо­ложения нельзя было бы написать выражения (2) и (3) в такой про­стой форме, а надо было бы выяснить, как присутствие молекулы в первом эле­менте объема влияет на вероятность наличия молекулы во втором.

Натяжение на единицу длины вдоль произвольной линии на поверхности жид­ко­сти должно быть равным (в соответствующей системе единиц) работе, за­трачен­ной на создание единицы площади свободной поверхности. Это следует из опыта по рас­тяже­нию пленки жидкости (рис. 2).


На проволочной рамке держится жидкая пленка, прикрепленная правым краем к свобод­но пе­ре­мещаемой проволочке. Сила F , необходимая для уравновешивания натяжения в двусто­ронней пленке, пропорциональна длине L . Пусть F = 2sL . Смещение проволочки на расстоя­ние dx требует работы Fsdx = sdA , где dA - увеличение площади. Таким образом, натяже­ние на единицу длины на отдель­ной поверхности, или поверхностное натяжение s , численно равно поверхност­ной энергии на единицу площади.

Величина этой работы может быть сразу получена из выражения (6) для F (l ). Если взять два полубесконечных тела в контакте и развести их на расстоя­ние, пре­вышающее радиус действия межмолекулярных сил, работа на единицу площади бу­дет определяться как

(8)

При разделении образуются две свободные поверхности, и потому затраченную ра­боту можно приравнять удвоенной поверхностной энергии на единицу пло­щади, ко­торая равна поверхностному натяжению:

(9)

Таким образом, K есть интеграл от межмолекулярного потенциала, или его ну­левой момент, а H - его первый момент. В то время как K недоступно прямому экспери­менту, H может быть найдено, если мы сможем измерить поверхностное натяжение.

Пусть ### - плотность когезионной энергии в некоторой точке жидкости или газа, т.е. отношение dU/dV где dU - внутренняя энергия малого объема ###V жидко­сти или газа, содержащего эту точку. Для молекулярной модели прини­маем

(10)

Где r - расстояние от рассматриваемой точки. Рэлей отождествлял лапласов­ское K с разностью этого потенциала 2### между точкой на плоской поверхности жидкости (значение 2### S ) и точкой внутри (значение 2### I ). На поверхности ин­тегрирование в (10) ограничено полусферой радиуса d , а во внутренней области проводится по всей сфере. Следовательно, ### S есть половина ### I , или

(11)

Рассмотрим теперь каплю радиуса R . Расчет f I не изменяется, но при по­луче­нии f S интегрирование теперь проводится по более ограниченному объему из-за кри­визны поверхности. Если ### - угол между вектором и фиксирован­ным радиусом , то

Тогда внутреннее давление в капле есть

Где H определяется уравнением (9). Если бы мы взяли не сферическую каплю, а пор­цию жидкости с поверхностью, определяемой двумя главными радиусами кривизны R 1 и R 2 , то получили бы внутренне давление в виде

(14)

По теореме Эйлера сумма равна сумме обратных радиусов кривизны по­верх­ности вдоль любых двух ортогональных касательных.

Так как K и H положительны и R положительно для выпуклой поверхно­сти, то из (13) следует, что внутреннее давление в капле выше, чем в жидкости с плоской поверх­ностью. Наоборот, внутреннее давление в жидкости, ограни­чен­ной вогнутой сфериче­ской поверхностью ниже, чем в жидкости с плоской по­верхностью, по­скольку R в этом случае отрицательно.

Эти результаты составляют основу теории капиллярности Лапласа. Урав­нение для разности давлений (давление жидкости внутри сферической ка­пли радиуса R ) и (давление газа снаружи) теперь называют уравнением Лапласа:

(15)

Достаточно трех идей - натяжения у поверхности, внутреннего давления и крае­вого угла, а также выражений (1) и (15), чтобы решить все задачи обыч­ной рав­новесной капиллярности методами классической статики. Таким обра­зом, после ра­бот Лапласа и Юнга основы количественной теории капиллярно­сти были заложены.

Результаты Юнга были получены позже Гауссом вариационным мето­дом. Но все эти работы (Юнга, Лапласа и Гаусса) обладали одним общим недостат­ком, изъя­ном, если можно так выразиться. Об этом недостатке будет рассказано позже.

При расчете давления внутри искривленной жидкой поверхности был вве­ден по­тенциал Рэлея 2### (10); попутно было отмечено, что ### I является плотно­стью коге­зион­ной энергии. Впервые это полезное понятие в 1869 г. ввел Дюпре, который определил его как работу дробления куска вещества на со­ставляющие его молекулы (la travail de dйsagrйgation totale - работа полной дез­аг­регации).


Направленная внутрь сила, действующая на молекулу на глубине r , противоположна по знаку направленной наружу силе, которая бы возникла со стороны молекул в заштрихован­ном объ­еме, если бы он был заполнен равномерно с плотностью r .

Он приводит вывод, проделанный его коллегой Ф. Ж. Д. Массье сле­дую­щим образом. Сила, действующая на молекулу у поверхности по направле­нию к объ­ему жидкости, противоположна по знаку силе, возникающей от за­штрихованного объема на рис. 3, поскольку внутри жидкости сила притяжения от шарового объема радиуса равна нулю из симметрии. Таким образом, сила, направленная внутрь, есть

Эта сила положительна, так как f (0 s d) F(d ) = 0 из-за нечетности функ­ции f (s ). Никакая сила не действует на молекулу, если только она не нахо­дится в преде­лах расстояния d по ту или иную сторону от поверхности. Следо­вательно, ра­бота удале­ния одной молекулы из жидкости равна

Поскольку u (r ) - четная функция. Эта работа равна минус удвоенной энергии на мо­лекулу, необходимой для дезинтеграции жидкости (удвоенной , чтобы не считать мо­ле­кулы дважды: один раз при их удалении, другой раз - как часть среды):

(18)

Это простое и понятное выражение для внутренней энергии U жидкости, со­дер­жа­щей N молекул. Отсюда следует, что плотность когезионной энергии ### дается выра­жением (10), или

(19)

Что совпадает с (11), если убрать индекс I . Сам Дюпре получил тот же результат околь­ным путем. Он рассчитывал dU/dV через работу против межмолекуляр­ных сил при од­нородном расширении куба жидкости. Это дало ему


(20)

Поскольку K имеет форму
((7) и (11)), где постоянная a дается выражением

(21)

То интегрирование (20) снова приводит к (19).

Рэлей критиковал вывод Дюпре . Он считал, что рассмотрение работы од­но­родного расширения от состояния баланса когезионных и отталкивающих межмо­леку­лярных сил при учете только когезионных сил было необоснован­ным; прежде чем предпринять подобный шаг, следовало бы располагать луч­шим знанием вида сил от­талкивания.

Мы видим, что в этом выводе, как и в выводах Юнга, Лапласа и Гаусса, суще­ст­венным образом используется предположение о скачкообразном изменении плот­ности числа молекул вещества на границе раздела фаз. В то же время, чтобы прове­денные рассуждения описывали реальные явления в веществе, необходимо предпо­лагать, что радиус действия межмолекулярных сил в веществе много больше харак­терного рас­стояния между частицами. Но при этом предположении граница раздела двух фаз не может быть резкой - должен возникнуть непрерывный переходный профиль плотно­сти, иначе говоря, переходная зона 3 .

Были предприняты попытки обобщить эти выводы на непрерывный переход­ный профиль. В частности, Пуассон, пытаясь пойти по такому пути, пришел к оши­бочному выводу, что при наличии переходного профиля поверхностное натяжение должно во­обще исчезнуть. Позже Максвелл показал ошибочность такого вывода.

Однако, само предположение о том, что радиус действия межмолекулярных сил в веществе много больше характерного расстояния между частицами не соответ­ствует экспериментальным данным. В действительности, эти расстояния одного по­рядка. По­этому механистическое рассмотрение в духе Лапласа является, говоря со­временным языком, теорией среднего поля. Таковой же является не описанная здесь теория Ван-дер-Ваальса, давшая знаменитое уравнение состояния реальных газов. Во всех этих случаях точный расчет требует учета корелляций между плотностями ко­личества час­тиц в различных точках. Это делает задачу очень сложной.

В методе лежащей капли жидкость с известным поверхностным натяжением помещается на твердую поверхность с помощью шприца. Диаметр капли должен быть от 2 до 5 мм; это гарантирует, что краевой угол не будет зависеть от диаметра. В случае очень малых капелек будет велико влияние поверхностного натяжения самой жидкости (будут формироваться сферические капли), а в случае больших капель начинают доминировать силы гравитации.

В методе лежащей капли измеряется угол между твердой поверхностью и жидкостью в точке контакта трех фаз. Соотношение сил межфазного и поверхностного натяжения в точке контакта трех фаз может описываться уравнением Юнга, на базе которого можно определить краевой угол:

Частным случаем является метод "плененного пузырька": краевой угол измеряется под поверхностью в жидкости.

Изначально измерения проводились с помощью гониометра (ручного прибора для измерения контактного угла) или микроскопа. Современные технологии позволяют записать изображение капли и получить все необходимые данные с помощью программ .


Статический краевой угол

При статическом методе размер капли не меняется в течение всего измерения, но это не означает, что угол контакта всегда остается постоянным. Наоборот, воздействие внешних факторов может привести к изменению угла контакта со временем. Из-за седиментации, испарения и аналогичных химических или физических взаимодействий краевой угол будет самопроизвольно изменяться со временем.

С одной стороны, статический краевой угол не может абсолютно оценить свободную энергию твердой поверхности , а с другой, он позволяет охарактеризовать временную зависимость таких процессов как высыхание чернил, нанесение клея, абсорбцию и адсорбцию жидкостей на бумаге.

Изменение свойств во времени (растекание капли) зачастую мешают исследованиям. В качестве источника ошибки также может выступить пятнышко, царапина на образце, любая неоднородная поверхность будет иметь отрицательный эффект в точности измерения, что может быть сведено к минимуму в динамических методах.


Динамический краевой угол

При измерении динамического контактного угла игла шприца остается в капле, и ее объем изменяется с постоянной скоростью. Динамический угол контакта описывает процессы на границе твердое тело/жидкость во время увеличения объема капли (натекающий угол) или при уменьшении капли (оттекающий угол), т.е. во время смачивания и осушения. Граница не образуется мгновенно, для достижения динамического равновесия требуется время. Из практики рекомендуется устанавливать поток жидкости 5 - 15 мл/мин, более высокая скорость потока будет только имитировать динамические методы. Для высоковязких жидкостей (например, глицерина), скорость формирования капли будет иметь другие пределы.


Натекающий угол. Во время измерения натекающего угла игла шприца остается в капле на протяжении всего опыта. Сначала на поверхности образуется капелька диаметром 3-5 мм (при диаметре иглы 0,5 мм, которая используется фирмой KRUSS), а потом она расплывается по поверхности.
В начальный момент угол контакта не зависит от размера капли, т.к. сильны силы сцепления с иглой. При определенном размере капли угол контакта становится постоянным, и именно в этот момент надо проводить измерения.
Этот тип измерения имеет наибольшую воспроизводимость. Натекающие углы обычно измеряют для определения свободной энергии поверхности .


Оттекающий угол. Во время измерения оттекающего угла размер капли уменьшается, т.к. поверхность осушается: большая капля (приблизительно 6 мм в диаметре) помещается на поверхность и затем медленно уменьшается за счет всасывания через иглу.
По разнице между натекающим углом и оттекающим углом можно сделать заключение о неровностях поверхности или ее химической неоднородности. Оттекающий угол НЕ подходит для расчета СЭП.

Методы оценки формы лежащей капли

Метод Юнга-Лапласа. Наиболее трудоемкий, но и наиболее точный метод расчета краевого угла. В этом методе при построении контура капли учитываются поправки на то, что не только межфазные взаимодействия разрушают форму капли, но и собственный вес жидкости. Эта модель предполагает, что форма капли симметрична, поэтому она не может использоваться для динамических краевых углов. Для натекающей капли краевой угол также может быть определен только до 30°.

Метод длины-ширины. В этом методе оценивается длина растекания капли и ее высота. Контур, являющийся частью окружности, вписывают в прямоугольник и рассчитывают краевой угол из соотношения ширины и высоты. Данный метод более точен для мелких капель, формы которых ближе к сфере. Не подходит для динамического краевого угла, т.к. игла остается в капле и нельзя точно определить высоту капли.

Метод круга. В этом методе капля представляется как часть круга, как и в методе длины-ширины, однако краевой угол рассчитывается не с помощью прямоугольника, а с помощью сегмента окружности. Но в отличии от метода длины-ширины игла, оставшаяся в капле, меньше влияет на результаты измерения.

Тангенциальный метод 1. Полный контур лежащей капли подгоняется к уравнению конического сегмента. Производная этого уравнения в точке пересечения контура и базовой линии дает угол наклона в точке контакта, т.е. краевой угол. Этот метод может использоваться с динамическими методами оценки в том случае, если капля не сильно разрушается иглой.

Тангенциальный метод 2. Часть контура лежащей капли, расположенной рядом с базовой линией, адаптирована к функции полинома типа y=a + bx + cx 0,5 + d/lnx + e/x 2 . Эта функция получилась в результате многочисленных математических моделирований. Метод считается точным, но чувствительным к загрязнениям и посторонним веществам в жидкости. Подходит для определения динамических краевых углов, но он требует четкого построения изображений, особенно в точке контакта фаз.

Метод лежащей капли (sessile drop) реализован в приборах для измерения краевого угла DSA , которые широко используются в лабораториях для изучения свойств поверхностей. Данные приборы также позволяют измерить поверхностное и межфазное натяжение жидкостей

Уравнение

где ортогональные декартовы координаты, называют уравнением Лапласа. Выражение, стоящее в левой его части, называют лапласианом функции и, а правило, по которому образуется выражение, - оператором Лапласа. Оператор Лапласа принято обозначать символом вследствие чего уравнение (1) может быть записано в форме

Неоднородное уравнение

где заданная функция, называют уравнением Пуассона.

Вид дифференциальных выражений в левых частях уравнений Лапласа и Пуассона одинаков во всех ортогональных декартовых координатах. При переходе к криволинейным координатам он изменяется и может быть, для ортогональных криволинейных координат, определен с помощью соотношений § 7 предыдущей главы. В частности, используя формулы (54), (48) и (49) гл. XVIII найдем, что в цилиндрических координатах

в сферических координатах

К уравнениям Лапласа и Пуассона приводят многочисленные задачи теории теплопроводности, электростатики, гидродинамики и т. д. Рассмотрим, например, постановку некоторых задач для уравнения Лапласа.

1. Задача о стационарном тепловом состоянии однородного тела. Допустим, что мы имеем некоторое

изолированное от внешнего пространства однородное изотропное тело, тепловое состояние которого не меняется с течением времени. Обозначим через V занятую им часть пространства, через его поверхность, а через и температуру в точке

Докажем, что во всякой внутренней точке х взятого нами тела функция удовлетворяет уравнению Лапласа.

С этой целью выделим из тела некоторую область ограниченную произвольно взятой поверхностью и рассмотрим количество тепла, которое проходит в единицу времени через элемент поверхности. Согласно принципу Фурье, оно пропорционально площади элемента и нормальной производной где через обозначено направление внешней нормали к поверхности. Другими словами, это количество тепла равно произведению

Коэффициент пропорциональности называется коэффициентом внутренней теплопроводности тела.

Рассмотрим движение тепла в теле. Из термодинамики известно, что тепло течет от точек с большей температурой к точкам с меньшей температурой. Следовательно, при отрицательной производной поток тепла будет происходить из внутренней части тела, ограниченной поверхностью в область, внешнюю по отношению к этой поверхности. Если же указанная производная положительна, то распространение тепла будет представлять обратную картину.

Отсюда вытекает, что двойной интеграл

дает алгебраическую сумму количества тепла, прошедшего за единицу времени через поверхность причем вытекающему теплу приписывается отрицательный знак, а втекающему - положительный.

Если предположить, что внутри тела отсутствуют как источники тепла, так и точки его поглощения, то интеграл (5) должен равняться нулю. Действительно, если бы это было не так, то тепло накапливалось бы или терялось внутри тела, и, следовательно, температура тела изменилась бы с течением времени, что противоречит предположению о неизменности теплового состояния тела.

Итак, в данном случае должно иметь место следующее равенство:

Применим в области формулу Грина (7) гл. XVIII:

и положим в ней

Тогда, приняв во внимание, что интеграл (5) равен нулю, найдем, что

Отсюда, ввиду произвольности области вытекает, что

т. е. функция удовлетворяет уравнению Лапласа.

Предположим теперь, что нам известно распределение температуры на поверхности тела и мы желаем определить температуру любой точки, находящейся внутри тела.

Очевидно, мы решим эту задачу, если найдем такое решение уравнения Лапласа, которое удовлетворяло бы граничному условию

где обозначает температуру в точке х поверхности

2. Задача о равновесии электрических масс на поверхности проводника. Рассмотрим стационарное электростатическое поле, созданное в пространстве некоторой системой электрических зарядов. Если заряды расположены дискретно в точках то потенциал поля в точке х

где расстояние от заряда до точки х. Если же заряды непрерывно распределены на некоторой линии или поверхности или в объеме У, то потенциал поля соответственно выражается одним из интегралов:

где расстояние от элемента линии (поверхности, объема) до точки поля, обладающей потенциалом и. В этих формулах величины обозначают линейную, поверхностную или объемную плотность зарядов:

где заряд элемента линии L (поверхности S, объема V). В общем случае потенциал поля равен сумме потенциалов, созданных каждым из этих видов распределения зарядов в отдельности.

Допустим, что конечная область V пространства занята проводящей средой - проводником, т. е. средой, в которой заряды могут свободно передвигаться, а остальная часть пространства - диэлектриком, т. е. средой, в которой движение зарядов невозможно.

В стационарном состоянии потенциал поля во всех точках области V, включая ее границу, одинаков, так как иначе бы возникло движение электрических зарядов, стремящееся выровнять потенциал, и поле менялось бы. Отсюда непосредственно очевидно, что в области V потенциал поля и удовлетворяет уравнению Лапласа:

Внутри проводника заряды разных знаков должны быть взаимно нейтрализованы. В самом деле, оставшиеся внутри проводника избыточные заряды какого-либо знака под действием отталкивания между одноименными зарядами перемещались бы до тех пор, пока все они не оказались бы на границе проводника и не распределились на ней должным образом. Следовательно, если достигается стационарное состояние, то избыточные заряды располагаются на границе проводника в виде бесконечно тонкого электрического слоя.

Потенциал этого слоя в точке выражается интегралом:

где расстояние от переменной точки поверхности проводника до точки х.

Если точка х находится вне проводника, то функция у удовлетворяет уравнению Лапласа. В самом деле,

Следовательно, уравнению Лапласа удовлетворяет и потенциал и, определяемый формулой (12). Чтобы доказать это утверждение, достаточно применить к интегралу (12) правило дифференцирования по параметру, что мы имеем право сделать, так как, по

предположению, точка х находится вне поверхности следовательно, подынтегральная функция в выражении (12) нигде не обращается в бесконечность.

Итак, в каждой точке х, лежащей вне проводника, потенциал и также удовлетворяет уравнению Лапласа.

Обратимся теперь к выяснению обстоятельств, имеющих место в бесконечно удаленных точках пространства, заполненного диэлектриком, и на самой поверхности проводника.

Как мы это выясним ниже, интеграл (12) обращается в бесконечно удаленных точках в нуль (вместе со своими частными производными первого порядка), и притом так, что произведения

остаются ограниченными, когда расстояние от точки х до начала координат увеличивается до бесконечности. Что касается обстоятельств, имеющих место на поверхности проводника, то будет доказано, что потенциал и остается ограниченным и непрерывным при переходе точки х через поверхность проводника. Напротив, нормальные производные потенциала и при таком переходе претерпевают конечный разрыв непрерывности, причем этот разрыв характеризуется равенством

где предельные значения выражения

при приближении точки х к точке соответственно по внутренней и внешней нормали к в точке

Воспользуемся равенством (13) для постановки так называемой электростатической задачи: найти плотность электрического слоя, непрерывно распределенного на поверхности данного проводника, если последний находится в состоянии электрического равновесия.

Допустим, что для данного проводника такое состояние наступило. Тогда, по данным выше разъяснениям, потенциал внутри проводника будет величиной постоянной, и, следовательно, будет иметь место равенство

Из этого равенства и из формулы (13) вытекает, что

т. е. искомая плотность слоя будет найдена, если мы определим потенциал и этого слоя в точках, лежащих вне проводника.

Уравнение рассматривают также в двумерном и одномерном пространстве. В двумерном пространстве уравнение Лапласа записывается:

∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 = 0 {\displaystyle {\frac {\partial ^{2}u}{\partial x^{2}}}+{\frac {\partial ^{2}u}{\partial y^{2}}}=0}

Также и в n -мерном пространстве. В этом случае нулю приравнивается сумма n вторых производных.

Δ = ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 + . . . {\displaystyle \Delta ={\frac {\partial ^{2}}{\partial x^{2}}}+{\frac {\partial ^{2}}{\partial y^{2}}}+{\frac {\partial ^{2}}{\partial z^{2}}}+...}
  • Замечание: всё сказанное выше относится к декартовым координатам в плоском пространстве (какова бы ни была его размерность). При использовании других координат представление оператора Лапласа меняется, и, соответственно, меняется запись уравнения Лапласа (пример - см. ниже). Эти уравнения также называются уравнением Лапласа, однако для устранения неоднозначности терминологии при этом обычно явно добавляется указание системы координат (и, при желании полной ясности, размерности), например: "двумерное уравнение Лапласа в полярных координатах".

Другие формы уравнения Лапласа

1 r 2 ∂ ∂ r (r 2 ∂ f ∂ r) + 1 r 2 sin ⁡ θ ∂ ∂ θ (sin ⁡ θ ∂ f ∂ θ) + 1 r 2 sin 2 ⁡ θ ∂ 2 f ∂ φ 2 = 0 {\displaystyle {1 \over r^{2}}{\partial \over \partial r}\left(r^{2}{\partial f \over \partial r}\right)+{1 \over r^{2}\sin \theta }{\partial \over \partial \theta }\left(\sin \theta {\partial f \over \partial \theta }\right)+{1 \over r^{2}\sin ^{2}\theta }{\partial ^{2}f \over \partial \varphi ^{2}}=0}

Особые точки r = 0 , θ = 0 , θ = π {\displaystyle r=0,\theta =0,\theta =\pi } .

1 r ∂ ∂ r (r ∂ u ∂ r) + 1 r 2 ∂ 2 u ∂ φ 2 = 0 {\displaystyle {\frac {1}{r}}{\frac {\partial }{\partial r}}\left(r{\frac {\partial u}{\partial r}}\right)+{\frac {1}{r^{2}}}{\frac {\partial ^{2}u}{\partial \varphi ^{2}}}=0}

Особая точка .

1 r ∂ ∂ r (r ∂ f ∂ r) + ∂ 2 f ∂ z 2 + 1 r 2 ∂ 2 f ∂ φ 2 = 0 {\displaystyle {1 \over r}{\partial \over \partial r}\left(r{\partial f \over \partial r}\right)+{\partial ^{2}f \over \partial z^{2}}+{1 \over r^{2}}{\partial ^{2}f \over \partial \varphi ^{2}}=0}

Особая точка r = 0 {\displaystyle r=0} .

Применение уравнения Лапласа

Уравнение Лапласа возникает во многих физических задачах механики, теплопроводности, электростатики, гидравлики. Большое значение оператор Лапласа имеет в квантовой физике, в частности в уравнении Шрёдингера .

Решения уравнения Лапласа

Несмотря на то, что уравнение Лапласа является одним из самых простых в математической физике, его решение сталкивается с трудностями. Особенно трудным бывает численное решение из-за нерегулярности функций и наличия особенностей.

Общее решение

Одномерное пространство

f (x) = C 1 x + C 2 {\displaystyle f(x)=C_{1}x+C_{2}}

где C 1 , C 2 {\displaystyle C_{1},C_{2}} - произвольные постоянные.

Двумерное пространство

Уравнению Лапласа на двумерном пространстве удовлетворяют аналитические функции. Аналитические функции рассматриваются в теории функций комплексного переменного, и класс решений уравнения Лапласа можно свести к функции комплексного переменного.

Уравнение Лапласа для двух независимых переменных формулируется в следующем виде

φ x x + φ y y = 0. {\displaystyle \varphi _{xx}+\varphi _{yy}=0.}

Аналитические функции

Если z = x + iy , и

f (z) = u (x , y) + i v (x , y) , {\displaystyle f(z)=u(x,y)+iv(x,y),}

то условия Коши - Римана являются необходимыми и достаточными для того, чтобы функция f (z ) была аналитической:

∂ u ∂ x = ∂ v ∂ y , ∂ u ∂ y = − ∂ v ∂ x . {\displaystyle {\frac {\partial u}{\partial x}}={\frac {\partial v}{\partial y}},~{\frac {\partial u}{\partial y}}=-{\frac {\partial v}{\partial x}}.}

И вещественная и мнимая части аналитических функций удовлетворяют уравнению Лапласа. Продифференцировав условия