Дисперсия альтернативного статистического признака исчисляется по формуле. Вариация альтернативного признака

Показатели вариации

Показатели вариации характеризует колеблемость индивидуальных значений признака по отношению к среднему значению, что не менее важно, чем определение самой средней. Средняя не показывает строения совокупности, как располагаются около нее варианты осредняемого признака, сосредоточены ли они вблизи средней или значительно отклоняются от нее. Средняя величина признака в двух совокупностях может быть одинаковой, но в одном случае все индивидуальные значения отличаются от нее мало, а в другом эти отличия велики, т.е. в одном случае вариация признака мала, а в другом велика.
Это можно показать на таком примере. Предположим, что две бригады из 3-х человек каждая выполняют одинаковую работу. Количество деталей, изготовленных за смену отдельными рабочими, составило:
в первой бригаде- 95, 100, 105;
во второй бригаде- 75, 100, 125.
Средняя выработка на одного рабочего в бригадах составила

, .
Средняя выработка одинакова, но колеблемость выработки отдельных рабочих в первой бригаде значительно меньше, чем во второй.
Следовательно, чем больше варианты отдельных единиц совокупности различаются между собой, тем больше они отличаются от своей средней, и наоборот – варианты, мало отличающиеся друг от друга, более близки по значению к средней, которая в таком случае будет более реально представлять всю совокупность.

Поэтому для характеристики и измерения вариации признака в совокупности кроме средней используют следующие показатели:

  • абсолютные - вариационный размах, среднее линейное и среднее квадратическое отклонение, дисперсию;
  • относительные - коэффициенты вариации.

Вариационный размах (или размах вариации) - это разница между максимальным и минимальным значениями признака:

В нашем примере размах вариации сменной выработки рабочих составляет: в первой бригаде R=105-95=10 дет., во второй бригаде R=125-75=50 дет. (в 5 раз больше). Это говорит о том, что выработка 1-й бригады более «устойчива», но резервов роста выработки больше у второй бригады, т.к. в случае достижения всеми рабочими максимальной для этой бригады выработки, ею может быть изготовлено 3*125=375 деталей, а в 1-й бригаде только 105*3=315 деталей.
Недостатком показателя вариационного размаха является то, что его величина не отражает все колебания признака.
Простейшим обобщающим показателем, отражающим все колебания признака, является среднее линейное отклонение , представляющее собой среднюю арифметическую абсолютных отклонений отдельных вариант от их средней величины:
для несгруппированных данных
,
для сгруппированных данных
,
где хi – значение признака в дискретном ряду или середина интервала в интервальном распределении.
В вышеприведенных формулах разности в числителе взяты по модулю, иначе, согласно свойству средней арифметической, числитель всегда будет равен нулю. Поэтому среднее линейное отклонение в статистической практике применяют редко, только в тех случаях, когда суммирование показателей без учета знака имеет экономический смысл. С его помощью, например, анализируется состав работающих, рентабельность производства, оборот внешней торговли.
Дисперсия признака – это средний квадрат отклонений вариант от их средней величины:
простая дисперсия
,
взвешенная дисперсия
.
Формулу для расчета дисперсии можно упростить:

Таким образом, дисперсия равна разности средней из квадратов вариант и квадрата средней из вариант совокупности:
.
Однако, вследствие суммирования квадратов отклонений дисперсия дает искаженное представление об отклонениях, поэтому ее на основе рассчитывают среднее квадратическое отклонение , которое показывает, на сколько в среднем отклоняются конкретные варианты признака от их среднего значения. Вычисляется путем извлечения квадратного корня из дисперсии:
для несгруппированных данных
,
для вариационного ряда

Чем меньше значение дисперсии и среднего квадратического отклонения, тем однороднее совокупность, тем более надежной (типичной) будет средняя величина.
Среднее линейное и среднее квадратичное отклонение - именованные числа, т. е. выражаются в единицах измерения признака, идентичны по содержанию и близки по значению.
Рассчитывать абсолютные показатели вариации рекомендуется с помощью таблиц.
Таблица 3 – Расчет характеристик вариации (на примере срока данных о сменной выработке рабочих бригады)

Группы рабочих по выработке, шт.

Число рабочих,

Середина интервала,

Расчетные значения

170-190 10 180 1800 -36 360 1296 12960
190-210 20 200 4000 -16 320 256 5120
210-230 50 220 11000 4 200 16 800
230-250 20 240 4800 24 480 576 11520
Итого: 100 - 21600 - 1360 - 30400

Среднесменная выработка рабочих:

Среднее линейное отклонение:

Дисперсия выработки:

Среднее квадратическое отклонение выработки отдельных рабочих от средней выработки:
.

Вычисление дисперсий связано с громоздкими расчетами (особенно если средняя величина выражена большим числом с несколькими десятичными знаками). Расчеты можно упростить, если использовать упрощенную формулу и свойства дисперсии.
Дисперсия обладает следующими свойствами (доказываемые в математической статистике):

1. если все значения признака уменьшить или увеличить на одну и ту же величину А, то дисперсия от этого не уменьшится,


Расчет дисперсии альтернативного признака

Среди признаков, изучаемых статистикой, есть и такие, которым свойственны лишь два взаимно исключающих значения. Это альтернативные признаки. Им придается соответственно два количественных значения: варианты 1 и 0. Частостью варианты 1, которая обозначается p, является доля единиц, обладающих данным признаком. Разность 1-р=q является частостью варианты 0. Таким образом,

хi wi
1 p
0 q

Средняя арифметическая альтернативного признака
, т. к. p+q=1.

Дисперсия альтернативного признака
, т.к. 1-р=q
Таким образом, дисперсия альтернативного признака равна произведению доли единиц, обладающих данным признаком, и доли единиц, не обладающих этим признаком.
Если значения 1 и 0 встречаются одинаково часто, т. е. p=q, дисперсия достигает своего максимума pq=0,25.
Дисперсия альтернативного признака используется в выборочных обследованиях, например, качества продукции.


где q- доля единиц, не обладающих признаком p- доля единиц, обладающих признаком

p + q = 1

Среднее значение альтернативного признака


Дисперсия альтернативного признака:

Максимальное значение дисперсии альтернативного признака 0,25

Правило сложения дисперсий

Выделяют дисперсии:

2) групповую

3) межгрупповую

4) среднюю из групповых

Величина общей дисперсии характеризует вариацию признака под воздействием всех факторов, вызывающих эту вариацию:


где - среднее значение изучаемого признака для i – й группы

– общая средняя для всей совокупности

Номер группы

– количество единиц в i – й группе

Средняя из групповых (или остаточная) дисперсия характеризует случайную вариацию, т. е. ту часть вариации, которая вызвана действием других неучтённых факторов, и не зависящую от фактора, положенного в основании группировки:


где - групповая дисперсия


Общая дисперсия равна сумме межгрупповой и средней из групповых дисперсий:

Эмпирический коэффициент детерминации:

Эмпирический коэффициент детерминации показывает долю межгрупповой дисперсии в общей дисперсии (насколько общая вариация изучаемого признака обусловлена вариацией группировочного (факторного) признака), т.е. показывает, насколько вариация признака в совокупности обусловлена фактором группировки.

Эмпирическое корреляционное отношение:

Эмпирическое корреляционное отношение характеризует степень влияния группировочного признака на результативный показатель и оценивает тесноту связи между изучаемым и группировочным признаками. Эмпирическое корреляционное отношение изменяется в пределах от 0 до 1. Чем ближе η к 1, тем степень влияния больше, чем ближе к 0, тем слабее.

Стоимость 1 кв.м общей площади (у.е.) на рынке жилья по десяти 17-м домам улучшенной планировки составляла:

Таблица 14

При этом известно, что первые пять домов были построены вблизи делового центра, а остальные - на значительном расстоянии от него.

Для расчета общей дисперсии вычислим среднюю стоимость 1 кв.м. общей площади:

Общую дисперсию определим по формуле :

Вычислим среднюю стоимость 1 кв.м. и дисперсию по этому показателю для каждой группы домов, отличающихся месторасположением относительно центра города:

а) для домов, построенных вблизи центра:

б) для домов, построенных далеко от центра:

Вариация стоимости 1 кв.м. общей площади, вызванная изменением местоположения домов, определяется величиной межгрупповой дисперсии :

Вариация стоимости 1 кв.м. общей площади, обусловленная изменением остальных не учитываемых нами показателей, измеряется величиной внутригрупповой дисперсии

Дисперсия альтернативного признака

Частный случай атрибутивного (неколичественного) признака - признак альтернативный. Когда единицы совокупности либо имеют данный изучаемый признак, либо не имеют его. Примером таких признаков является: наличие бракованной продукции, ученая степень у преподавателей вуза, работа по полученной специальности, превышение среднедушевых денежных доходов их общероссийского уровня, наличие детей в семье и т.д.

В случае наличия альтернативного признака единице совокупности присваивается значение «1». В случае отсутствия - «0».

Весами в расчетах служат:

Доля единиц обладающих данным признаком;

Доля единиц, не обладающих данным признаком

Тогда средняя величина альтернативного признака равна:

дисперсия примет вид:

Дисперсия альтернативного признака изменяется в пределах от 0 до 0,25. Максимального значения 0,25 достигает при 0,5

Пример 4.11. При выборочном опросе 300 жителей Курска 60 из них высказались положительно по поводу хранения личных денежных сбережений в коммерческих банках города

Определить средний уровень, дисперсию и среднее квадратическое отклонение признака

Практическое применение вариации альтернативного признака в основном состоит в построении доверительных интервалов при проведении выборочного наблюдения.

Изучение формы распределения признака. Основные характеристики закономерностей распределения

Непременным условием успешности построений, исчислений и выводов на основе вариационных рядов является однородность обобщаемых в них совокупностей, устанавливаемая на базе глубокого теоретического анализа.

Четко выраженный порядок изменения частот в соответствии с изменением величины признака называют закономерностью распределения.

Знание типа закономерности распределения, (а следовательно, и формы кривой) необходимо прежде всего:

1. Для выяснения типичности условий получения первичного статистического материала. Так, появление многовершинной или существенно асимметричной кривой говорит о разнотипном составе совокупности и о необходимости перегруппировки данных с целью выявления более однородных групп.

2. Для обеспечения правильности выполнения практических расчетов и прогнозов. Так, применение формулы Г. Стерджесса для расчета оптимального числа групп интервального ряда, правила «трех сигм», коэффициента вариации Vу в качестве индикатора однородности совокупности, метода наименьших квадратов при моделировании корреляционной связи явлений, методов дисперсионного анализа и других правомочно лишь в условиях нормального и близких к нему распределений.

Закономерности вариационных рядов, выражающие в типе распределения их частот, наглядно выступают на графиках - гистограмме и полигоне распределения частот. Их рассмотрение показывает, что в гистограмме наблюдается большая скачкообразность распределения, а в полигоне обнаруживается постепенность перехода от одной группы к другой. Ломаная линия полигона частично сглаживает скачкообразность гистограммы, является более обобщенным приемом анализа распределения.

При увеличении строк интервального вариационного ряда и соответственном уменьшении величины его интервалов число сторон полигона распределения будет расти и ломаной линии будет присуща тенденция превратиться в пределе в некую кривую. Такая кривая называется кривой распределения . В ней происходит наибольшее освобождение данных от влияния случайных факторов. Она выявляет и показывает в максимально обобщенном виде характер вариации, закономерность распределения частот внутри однокачественной совокупности явлений.

Кривые распределения могут быть разных типов. В практике социально-экономических исследований широко применяется кривая нормального распределения. Она представляет собой одновершинную симметричную колоколообразную фигуру, правая и левая ветви которой равномерно и симметрично убывают, асимптотически приближаясь к оси абсцисс.

Отличительной особенностью этой кривой является совпадение в ней средней арифметической, моды и медианы. Если всю площадь между кривой и осью абсцисс принять за 100%, то в пределах заключено 68,3% частот, в пределах - 95,4%, в пределах 99,7% («правило трех сигм»).

Хотя нормальное, или симметричное, распределение соответствует природе ряда явлений, однако для общественных явлений оно нехарактерно, так как в нем отражаются различия, вызванные внешними воздействиями, присущие не развивающейся, а лишь колеблющейся совокупности единиц. Для социальных явлений характерно развитие, динамизм. Поэтому ряды и кривые распределения частот общественных явлений, как правило, асимметричны, в них частоты возрастают до максимума и убывают от него неравномерно. Именно наличие асимметрии, или скошенности, в рядах однородных совокупностей служит косвенным указанием на то, что исследуемый процесс проходит активную стадию развития.

Асимметричные ряды и соответствующие кривые имеют различные формы распределений, исследованные математической статистикой. Такими формами являются распределение Пуассона, распределение Максвелла, распределение Пирсона и др. Здесь асимметричность рассматривается в целом как единый тип распределения. При этом различают правостороннюю и левостороннюю асимметрии (скошенность).

Если длинная ветвь кривой расположена правее вершины, то асимметрия называется правосторонней, если эта ветвь расположена левее вершины - левосторонней. При правосторонней асимметрии при левосторонней. Поэтому разность между ними, отнесенную к, называют коэффициентом К. Пирсона и используют в качестве коэффициента асимметрии:

При правосторонней асимметрии этот коэффициент положителен, при левосторонней - отрицателен. Если = 0, вариационный ряд симметричен. Чем больше абсолютная величина коэффициента, тем больше степень скошенности.

Наиболее точным показателем асимметрии распределения является коэффициент асимметрии, вычисляемый по формуле

где n - число единиц совокупности. Как и в случае коэффициента Пирсона, при > 0 имеет место правосторонняя асимметрия, при < 0 левосторонняя. В симметричных распределениях = 0.

Чем больше величина ||, тем более асимметрично распределение. Установлена следующая оценочная шкала асимметричности:

|| - асимметрия незначительная;

0,25 < || - асимметрия заметная (умеренная);

|| > 0,5 - асимметрия существенная.

Поскольку коэффициенты и являются относительными безразмерными величинами, они часто применяются для сравнительного анализа асимметричности различных рядов распределения.

Характер асимметрии иногда указывает на направление развития. При исследовании вариации признаков, в отношении которых имеется заинтересованность в их увеличении (выполнение норм, выпуск продукции и т.д.), правосторонняя асимметрия свидетельствует о прогрессивности развития, о том, что оно идет в сторону увеличения показателя, а левосторонняя асимметрия указывает на наличие большого числа отстающих участков.

При исследовании вариации признаков, в отношении которых имеется заинтересованность в их уменьшении (себестоимость, трудоемкость, расход сырья на единицу продукции и т.п.), правосторонняя асимметрия свидетельствует о недостатках в развитии изучаемого процесса, левосторонняя - о прогрессивности его развития, о том, что последнее идет в сторону уменьшения показателя. В распределении работников по стажу (см. пример 4.9 = 5,75) наблюдается правосторонняя асимметрия, так как коэффициент асимметрии положителен: (5,955-5,75):2,47=0,095. Такая асимметрия для данного ряда прогрессивна, она свидетельствует о развитии ряда в сторону увеличения исследуемого показателя.

Форму распределения можно ориентировочно определить непосредственно рассмотрением эмпирических данных ряда, особенно если они изображены гистограммой и полигоном. Чтобы убедиться в правильности ориентировочного определения формы распределения, эмпирические данные ряда исследуются на их близость к теоретическому распределению, устанавливаемому с помощью построения соответствующей кривой распределения. Однако во многих случаях ни теория, ни непосредственное рассмотрение эмпирических данных не дают ответов на вопрос о форме распределения. Тогда обычно ведется исследование на близость эмпирических данных к нормальному распределению, так как распределения с небольшой или умеренной асимметричностью в большинстве случаев по своему типу относятся к нормальным.

Для объективного суждения о степени соответствия эмпирического распределения нормальному в статистике используется ряд критериев, называемых критериями согласия или соответствия.

К ним относятся критерии Пирсона, Романовского, Ястремского, Колмогорова, основанные на использовании различных теоретических представлений.

Например, наиболее используемый критерий согласия Пирсона («хи-квадрат») определяется по формуле:

где - эмпирические частоты (частости)

Теоретические частоты (частости)

Для оценки близости эмпирического распределения к теоретическому определяется вероятность достижения этим критерием данной величины. Если эта вероятность превышает 0,05, то отклонения фактических частот от теоретических считаются случайными, несущественными. Если же, то отклонения считаются существенными, а эмпирическое распределение - принципиально отличным от теоретического.

Для характеристики степени отклонения симметричного распределения от нормального рассчитывается показатель эксцесса. Он приближенно может быть определен с помощью коэффициента Линдберга.

где - доля (в%) количества вариант, лежащих в интервале равном половине среднего квадратического отклонения (в ту и другую сторону от величины средней) в общем количестве вариант данного ряда;

38,29 - доля (в %) количества вариант, лежащих в интервале, равном половине среднего квадратического отклонения (в ту и другую сторону от величины средней) в общем количестве вариант ряда нормального распределения

Эксцесс может быть положительным, отрицательным и равным нулю.

У высоковершинных кривых показатель эксцесса имеет положительный знак, у низковершинных кривых - отрицательный знак. Для кривой нормального распределения его величина равна нулю.

Для более точной характеристики степени отклонения симметричного распределения от нормального рассчитывается показатель островершинности (показатель эксцесса) (Ek) по формуле:

Он, как и коэффициент Линдберга, может быть положительным, отрицательным и равным нулю. Показатель эксцесса, как и показатель асимметрии, - число отвлеченное. Предельным значением отрицательного эксцесса является значение Ek= -2; величина же положительного эксцесса является величиной бесконечной.

Определение показателей асимметрии и эксцесса имеет не только описательное значение, часто их величины дают определенные указания для дальнейшего исследования изучаемых явлений. Так, например, появление значительного отрицательного эксцесса может указывать на качественную неоднородность исследуемой совокупности.

Современные компьютерные технологии открывают широкие возможности для выполнения громоздких вычислительных операций по анализу вариационных рядов. Если материал теоретически осмыслен и выдвинута разумная гипотеза о форме распределения (последнее, кстати, ЭВМ тоже в состоянии проверить), вычислительные устройства могут быстро исчислить различные обобщающие показатели и критерии, построить графики и т.д. Это тем более возможно, так как показатели вариации сравнительно несложны и хорошо формализованы.

σ p 2 =

Подставив в формулу дисперсии q = 1 - р , получим

σ p 2 =

Таким образом, σ p 2 = pq - дисперсия альтернативного признака равна произведению доли единиц, обладающих признаком, на долю единиц, не обладающих данным признаком.

Среднее квадратическое отклонение (σ ) равно корню квадратному из дисперсии. Простое среднее квадратическое отклонение:

σ =

взвешенное

σ =

Среднее квадратическое отклонение - это обобщающая характеристика размеров вариации признака в совокупности; оно показывает, на сколько в среднем отклоняются конкретные варианты от их среднего значения; является абсолютной мерой колеблемости признака и выражается в тех же единицах, что и варианты, поэтому экономически хорошо интерпретируется.

Среднее квадратическое отклонение альтернативного признака

σ p =

В статистической практике часто возникает необходимость сравнения вариаций различных признаков. Например, большой интерес представляет сравнение вариаций возраста рабочих и их квалификации, стажа работы и размера заработной платы, себестоимости и прибыли, стажа работы и производительности труда и т.д. Для подобных сопоставлений показатели абсолютной колеблемости признаков непригодны: нельзя сравнивать колеблемость стажа работы, выраженного в годах, с вариацией заработной платы, выраженной в рублях.

Для осуществления такого рода сравнений, а также сравнений колеблемости одного и того же признака в нескольких совокупностях с различной средней арифметической используют относительные показатели вариации

Относительные показатели вариации определяются как отношение абсолютных показателей вариации к средней арифметической.

Это коэффициент осцилляции, определяемый как отношение размаха вариации к средней арифметической величине в процентах
.

Линейный коэффициент вариации определяется аналогично, но по среднему линейному отклонению
.

Наиболее распространенными из них являются коэффициент вариации.

Коэффициент вариации представляет собой выраженное в процентах отношение среднего квадратического отклонения к средней арифметической:

Относительные показатели вариации характеризуют степень колеблемости признака внутри средней величины. По величине, например, коэффициента вариации можно определить степень однородности изучаемой совокупности. Совокупность считается достаточно однородной, если коэффициент вариации не превышает 33%. Для оценки качества, устойчивости средней величины установлены пределы. Самыми лучшими значениями коэффициента вариации являются
; допустимыми считаются значения до 50%.

6.3. Свойства дисперсии и упрощенные методы ее расчета.

Техника вычисления дисперсии по формулам достаточно сложна, а при больших значениях вариантов и частот может быть громоздкой. Расчет можно упростить, используя свойства дисперсии (доказываемые в математической статистике):

Первое свойство - если все значения признака уменьшить на одну и ту же постоянную величину А, то дисперсия от этого не изменится;

σ 2 (х-А) х 2

Второе свойство- если все значения признака уменьшить в одно и то же число i раз, то дисперсия соответственно уменьшится в i 2 раз.

σ 2 (х/ i ) = σ x 2 : i 2

Третье свойство (свойство минимальности) - средний квадрат отклонений

от любой величины А (отличной от средней арифметической) больше

дисперсии признака на квадрат разности между средней арифметической и величиной А

σ A 2 = σ x 2 +(x - A ) 2

Используя свойства дисперсии, получим следующую упрощенную формулу вычисления дисперсии в вариационных рядах с равными интервалами по способу моментов:

σ 2 =∙ (

- момент второго порядка

- квадрат момента первого порядка

На основании последнего свойства дисперсии упрщенная формула дисперсии для любого ряда (дискретного, интервального с равным и неравным интервалами) формула дисперсии примет вид:

6.4. Виды дисперсий.

Вариация признака обусловлена различными факторами, некоторые из этих факторов можно выделить, если статистическую совокупность разбить на группы по какому-либо признаку. Тогда, наряду с изучением вариации признака по всей совокупности в целом, становится возможным изучить вариацию для каждой из составляющих ее группы, а также и между этими группами. В простейшем случае, когда совокупность расчленена на группы по одному фактору, изучение вариации достигается посредством исчисления и анализа трех видов дисперсий: общей, межгрупповой и внутригрупповой.

Общая дисперсия σ 2 измеряет вариацию признака по всей совокупности под влиянием всех факторов, обусловивших эту вариацию. Она равна среднему квадрату отклонений отдельных значений признака х от общей средней и может быть вычислена какпростая дисперсия или взвешенная дисперсия .

Межгрупповая дисперсия δ 2 характеризует систематическую вариацию результативного порядка, обусловленную влиянием признака-фактора, положенного в основание группировки. Она равна среднему квадрату отклонений групповых (частных) средних
, от общей средней

и может быть исчислена как простая дисперсия или как взвешенная дисперсия по формулам, соответственно:

Межгрупповая дисперсия отражает вариацию признака, положенного в основу группировки.

Внутригрупповая (частная) дисперсия (в каждой группе ) σ i 2 , отражает случайную вариацию, т.е. часть вариации, обусловленную влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки. Она равна среднему квадрату отклонений отдельных значений признака внутри группы х от средней арифметической этой группы , (групповой средней) и может быть исчислена какпростая дисперсия или как взвешенная дисперсия по формулам, соответственно:

На основании внутригрупповых дисперсий по каждой группе, т.е. на основании σ i 2 можно определить среднюю из внутригрупповых дисперсий :

Согласно правилу сложения дисперсий общая дисперсия равна сумме средней из внутригрупповых и межгрупповой дисперсий:

Пользуясь правилом сложения дисперсий, можно всегда по двум известным дисперсиям определить третью - неизвестную, а также судить о силе влияния группировочного признака.

Долю вариации группировочного признака в совокупности характеризует эмпирический коэффициент детерминации
.

Подст-в в формулу дисперсии q = 1 - р, получим

Среднее квад-ое отклонение альтерн-ого признака

Коэффициент вариации представляет собой выраженное в процентах отношение среднего квадратического отклонения к средней арифметической:: V= σ / X‾ *100

Общая дисперсия σ 2 измеряет вариацию признака по всей совокупности под влиянием всех факторов, обусловивших эту вариацию. Она равна среднему квадрату отклонений отдель­ных значений признака х от общей средней х и может быть вычислена как простая дисперсия

Межгрупповая дисперсия δ 2 характеризует систематиче­скую вариацию результативного признака, обусловленную влия­нием признака-фактора, положенного в основание группиров­ки. Она равна среднему квадрату отклонений групповых (част­ных) средних X‾iот общей средней X‾:

Внутригрупповая (частная) дисперсия σ 2 i отражает случай­ную вариацию, т.е. часть вариации, обусловленную влиянием не­учтенных факторов и не зависящую от признака-фактора, поло­женного в основание группировки. Она равна среднему квадрату отклонений отдельных значений признака внутри группы х от средней арифметической этой группы х) (групповой средней) и может быть исчислена как простая дисперсия или как взвешенная дисперсия по формулам, соответственно:

На основании внутригрупповой дисперсии по каждой груп­пе, т.е. на основании σ 2 i можно определить общую среднюю извнутригрупповых дисперсий:

Согласно правилу сложения дисперсий общая дисперсия равна сумме средней из внутригрупповых и межгрупповой дисперсий:

Внутригрупповые дисперсии показывают вариации выработ­ки в каждой группе, вызванные всеми возможными фактора­ми (техническое состояние оборудования, обеспеченность ин­струментами и материалами, возраст рабочих, интенсивность труда и т.д.) , кроме различий в квалификационном разряд. Средняя из внутригрупповых дисперсий отражает вариацию выработки, обусловленную всеми факторами, кроме квалифика­ции рабочих, но в среднем по всей совокупности. Межгрупповая дисперсия характеризует вариацию групповых средних, обусловленную различиями групп рабочих по квали­фикационному разряду. Общая дисперсия отражает суммарное влияние всех возмож­ных факторов на общую вариацию среднечасовой выработки изделий всеми рабочими цеха.

Поэтому в статистическом анализе широко используется эм­пирический коэффициент детерминации (ή 2) - показатель, пред­ставляющий собой долю межгрупповой дисперсии в общей дис­персии результативного признака и характеризующий силу влия­ния группировочного признака на образование общей вариации:

ή 2 =δ 2 / σ 2 Эмпирический коэффициент детерминации показывает долю вариации результативного признака у под влиянием факторного признака х (остальная часть общей вариации у обуславливается вариацией прочих факторов). При отсутствии связи эмпирический коэф равен 0, а при функциональной связи – единице.Эмпирическое корреляционное отношение - это корень квад­ратный из эмпирического коэффициента детерминации: v

ή=√ δ 2 / σ 2 оно показывает тесноту связи между группировочным и ре­зультативным признаками.

Эмпирическое корреляционное отношение ή , как и ή 2 , может принимать значения от 0 до 1. Если связь отсутствует, то корреляционное отношение равно нулю, т.е. все групповые средние будут равны между собой, межгрупповой вариации не будет. Значит, группировочный при­знак никак не влияет на образование общей вариации. Если связь функциональная, то корреляционное отношение будет равно единице. В этом случае дисперсия групповых средних равна общей дисперсии, т.е. внутригрупповой вариации не будет. Это означает, что группировочный признак целиком оп­ределяет вариацию изучаемого результативного признака.

Чем значение корреляционного отношения ближе к еди­нице, тем теснее, ближе к функциональной зависимости связь между признаками.

Ряды динамики

Одной из важнейших задач статистики является изучение изменений анализируемых показателей во времени, то есть их динамика . Эта задача решается при помощи анализа рядов динамики (временных рядов).

Ряд динамики (или временной ряд) – это числовые значения определенного статистического показателя в последовательные моменты или периоды времени (т.е. расположенные в хронологическом порядке).

Числовые значения того или иного статистического показателя, составляющего ряд динамики, называют уровнями ряда и обычно обозначают буквой y . Первый член ряда y 1 называют начальным или базисным уровнем , а последний y n конечным . Моменты или периоды времени, к которым относятся уровни, обозначают через t .

Ряды динамики, как правило, представляют в виде таблицы или графика, причем по оси абсцисс строится шкала времени t , а по оси ординат – шкала уровней ряда y .