Производные карбоновых кислот. Химические свойства карбоновых кислот и методы получения Муравьиная кислота плюс хлор

Классификация

а) По основности (т. е. числукарбоксильных групп в молекуле):


Одноосновные (монокарбоновые) RCOOH; например:


СН 3 СН 2 СН 2 СООН;



НООС-СН 2 -СООН пропандиовая (малоновая) кислота



Трехосновные (трикарбоновые) R(COOH) 3 и т. д.


б) По строению углеводородного радикала:


Алифатические


предельные; например: СН 3 СН 2 СООН;


непредельные; например: СН 2 =СНСООН пропеновая(акриловая) кислота



Алициклические, например:



Ароматические, например:


Предельные монокарбоновые кислоты

(одноосновные насыщенные карбоновые кислоты) – карбоновые кислоты, в которых насыщенный углеводородный радикал соединен с одной карбоксильной группой -COOH. Все они имеют общую формулу C n H 2n+1 COOH (n ≥ 0); или CnH 2n O 2 (n≥1)

Номенклатура

Систематические названия одноосновных предельных карбоновых кислот даются по названию соответствующего алкана с добавлением суффикса - овая и слова кислота.


1. НСООН метановая (муравьиная) кислота


2. СН 3 СООН этановая (уксусная) кислота


3. СН 3 СН 2 СООН пропановая (пропионовая) кислота

Изомерия

Изомерия скелета в углеводородном радикале проявляется, начиная с бутановой кислоты, которая имеет два изомера:




Межклассовая изомерия проявляется, начиная с уксусной кислоты:


CH 3 -COOH уксусная кислота;


H-COO-CH 3 метилформиат (метиловый эфир муравьиной кислоты);


HO-CH 2 -COH гидроксиэтаналь (гидроксиуксусный альдегид);


HO-CHO-CH 2 гидроксиэтиленоксид.

Гомологический ряд

Тривиальное название

Название по ИЮПАК

Муравьиная кислота

Метановая кислота

Уксусная кислота

Этановая кислота

Пропионовая кислота

Пропановая кислота

Масляная кислота

Бутановая кислота

Валериановая кислота

Пентановая кислота

Капроновая кислота

Гексановая кислота

Энантовая кислота

Гептановая кислота

Каприловая кислота

Октановая кислота

Пеларгоновая кислота

Нонановая кислота

Каприновая кислота

Декановая кислота

Ундециловая кислота

Ундекановая кислота

Пальмитиновая кислота

Гексадекановая кислота

Стеариновая кислота

Октадекановая кислота

Кислотные остатки и кислотные радикалы

Кислотный остаток

Кислотный радикал (ацил)

НСООН
муравьиная


НСОО-
формиат


СН 3 СООН
уксусная

СН 3 СОО-
ацетат

СН 3 СН 2 СООН
пропионовая

СН 3 СН 2 СОО-
пропионат

СН 3 (СН 2) 2 СООН
масляная

СН 3 (СН 2) 2 СОО-
бутират

СН 3 (СН 2) 3 СООН
валериановая

СН 3 (СН 2) 3 СОО-
валериат

СН 3 (СН 2) 4 СООН
капроновая

СН 3 (СН 2) 4 СОО-
капронат

Электронное строение молекул карбоновых кислот


Показанное в формуле смещение электронной плотности в сторону карбонильного атома кислорода обусловливает сильную поляризацию связи О-Н, в результате чего облегчается отрыв атома водорода в виде протона - в водных растворах происходит процесс кислотной диссоциации:


RCOOH ↔ RCOO - + Н +


В карбоксилат-ионе (RCOO -) имеет место р, π-сопряжение неподеленной пары электронов атома кислорода гидроксильной группы с р-облаками, образующими π- связь, в результате происходит делокализация π- связи и равномерное распределение отрицательного заряда между двумя атомами кислорода:



В связи с этим для карбоновых кислот, в отличие от альдегидов, не характерны реакции присоединения.

Физические свойства


Температуры кипения кислот значительно выше температур кипения спиртов и альдегидов с тем же числом атомов углерода, что объясняется образованием циклических и линейных ассоциатов между молекулами кислот за счет водородных связей:


Химические свойства

I. Кислотные свойства

Сила кислот уменьшается в ряду:


НСООН → СН 3 СООН → C 2 H 6 COOH → ...

1. Реакции нейтрализации

СН 3 СООН + КОН → СН 3 СООК + н 2 O

2. Реакции с основными оксидами

2HCOOH + СаО → (НСОО) 2 Са + Н 2 O

3. Реакции с металлами

2СН 3 СН 2 СООН + 2Na → 2СН 3 СН 2 COONa + H 2

4. Реакции с солями более слабых кислот (в т. ч. с карбонатами и гидрокарбонатами)

2СН 3 СООН + Na 2 CO 3 → 2CH 3 COONa + CO 2 + Н 2 O


2НСООН + Mg(HCO 3) 2 → (НСОО) 2 Мg + 2СO 2 + 2Н 2 O


(НСООН + НСО 3 - → НСОО - + СO2 +Н2O)

5. Реакции с аммиаком

СН 3 СООН + NH 3 → CH 3 COONH 4

II. Замещение группы -ОН

1. Взаимодействие со спиртами (реакции этерификации)


2. Взаимодействие с NH 3 при нагревании (образуются амиды кислот)



Амиды кислот гидролизуются с образованием кислот:




или их солей:



3. Образование галогенангидридов

Наибольшее значение имеют хлорангидриды. Хлорирующие реагенты - PCl 3 , PCl 5 , тионилхлорид SOCl 2 .



4. Образование ангидридов кислот (межмолекулярная дегидратация)



Ангидриды кислот образуются также при взаимодействии хлорангидридов кислот с безводными солями карбоновых кислот; при этом можно получать смешанные ангидриды различных кислот; например:




III. Реакции замещения атомов водорода у α-углеродного атома



Особенности строения и свойств муравьиной кислоты

Строение молекулы


Молекула муравьиной кислоты, в отличие от других карбоновых кислот, содержит в своей структуре альдегидную группу.

Химические свойства

Муравьиная кислота вступает в реакции, характерные как для кислот, так и для альдегидов. Проявляя свойства альдегида, она легко окисляется до угольной кислоты:



В частности, НСООН окисляется аммиачным раствором Ag 2 O и гидроксидом меди (II) Сu(ОН) 2 , т. е. дает качественные реакции на альдегидную группу:




При нагревании с концентрированной H 2 SO 4 муравьиная кислота разлагается на оксид углерода (II) и воду:



Муравьиная кислота заметно сильнее других алифатических кислот, так как карбоксильная группа в ней связана с атомом водорода, а не с электроно-донорным алкильным радикалом.

Способы получения предельных монокарбоновых кислот

1. Окисление спиртов и альдегидов

Общая схема окисления спиртов и альдегидов:



В качестве окислителей используют KMnO 4 , K 2 Cr 2 O 7 , HNO 3 и другие реагенты.


Например:


5С 2 Н 5 ОН + 4KMnO 4 + 6H 2 S0 4 → 5СН 3 СООН + 2K 2 SO 4 + 4MnSO 4 + 11Н 2 O

2. Гидролиз сложных эфиров


3. Окислительное расщепление двойных и тройных связей в алкенах и в алкинах


Способы получения НСООН (специфические)

1. Взаимодействие оксида углерода (II) с гидроксидом натрия

СO + NaOH → HCOONa формиат натрия


2HCOONa + H 2 SO 4 → 2НСООН + Na 2 SO 4

2. Декарбоксилирование щавелевой кислоты


Способы получения СН 3 СООН (специфические)

1. Каталитическое окисление бутана


2. Синтез из ацетилена


3. Каталитическое карбонилирование метанола


4. Уксуснокислое брожение этанола


Так получают пищевую уксусную кислоту.

Получение высших карбоновых кислот

Гидролиз природных жиров


Непредельные монокарбоновые кислоты

Важнейшие представители

Общая формула алкеновых кислот: C n H 2n-1 COOH (n ≥ 2)


CH 2 =CH-COOH пропеновая (акриловая) кислота



Высшие непредельные кислоты

Радикалы этих кислот входят в состав растительных масел.


C 17 H 33 COOH - олеиновая кислота, или цис -октадиен-9-овая кислота


Транс -изомер олеиновой кислоты называется элаидиновой кислотой.


C 17 H 31 COOH - линолевая кислота, или цис, цис -октадиен-9,12-овая кислота




C 17 H 29 COOH - линоленовая кислота, или цис, цис, цис -октадекатриен-9,12,15-овая кислота

Кроме общих свойств карбоновых кислот, для непредельных кислот характерны реакции присоединения по кратным связям в углеводородном радикале. Так, непредельные кислоты, как и алкены, гидрируются и обесцвечивают бромную воду, например:



Отдельные представители дикарбоновых кислот

Предельные дикарбоновые кислоты HOOC-R-COOH


HOOC-CH 2 -COOH пропандиовая (малоновая) кислота, (соли и эфиры - малонаты)


HOOC-(CH 2) 2 -COOH бутадиовая (янтарная) кислота, (соли и эфиры - сукцинаты)


HOOC-(CH 2) 3 -COOH пентадиовая (глутаровая) кислота, (соли и эфиры - глутораты)


HOOC-(CH 2) 4 -COOH гексадиовая (адипиновая) кислота, (соли и эфиры - адипинаты)

Особенности химических свойств

Дикарбоновые кислоты во многом сходны с монокарбоновыми, однако являются более сильными. Например, щавелевая кислотасильнее уксусной почти в 200 раз.


Дикарбоновые кислоты ведут себя как двухосновные и образуют два ряда солей - кислые и средние:


HOOC-COOH + NaOH → HOOC-COONa + H 2 O


HOOC-COOH + 2NaOH → NaOOC-COONa + 2H 2 O


При нагревании щавелевая и малоновая кислоты легко декарбоксилируются:



1. Карбоновые кислоты диссоциируют в водном растворе с отщеплением протонов Н + , обусловливающих кислую среду раствора:

Водные растворы карбоновых кислот изменяют окраску индикаторов и являются электролитами. По сравнению с сильными минеральными кислотами (H 2 SO 4 , HNO 3 , HCl) – это слабые кислоты.

2. Карбоновые кислоты реагируют с активными металлами (примерно от Li до Fe в ряду напряжений металлов), выделяя водород:

3. Кислоты реагируют с основными оксидами :

4. Кислоты реагируют с основаниями :

5. Кислоты реагируют с аммиаком на холоду с образованием солей аммония:

Соли аммония карбоновых кислот термически неустойчивые соединения, при нагревании они отщепляют воду и превращаются в амиды кислот :

При нагревании амидов с водоотнимающими средствами (например, с пентаоксидом фосфора Р 2 О 5) образуются нитрилы карбоновых кислот :

6. Карбоновые кислоты реагируют с солями более слабых и летучих кислот:

7. Кислоты RCOOH реагируют со спиртами R"OH (реакция этерификации) с образованием сложных эфиров RCOOR". Это обратимая реакция:

8. Кислоты реагируют с хлоридами фосфора РСl 3 , РСl 5 , а также с тионилхлоридом SOCl 2 , обменивая гидроксильную группу на атом хлора:

9. Вследствие электроноакцепторного влияния карбоксильной группы СООН атомы водорода при углероде в -положении довольно подвижные и могут замещаться на атомы хлора или брома:

Муравьиная кислота НСООН по химическим свойствам несколько отличается от других карбоновых кислот. Так, для нее неизвестны хлорангидрид и ангидрид. В присутствии водоотнимающих средств (PCl 5 , SOCl 2 , H 2 SO 4 (конц.)) муравьиная кислота отщепляет воду с выделением оксида углерода(II):

Из-за наличия в молекуле Н–СООН альдегидного протона муравьиная кислота легко окисляется, в частности дает реакцию «серебряного зеркала»:

Ангидриды карбоновых кислот RC(O)–O–C(O)R получают взаимодействием галогенангидридов с солями карбоновых кислот:

Задача. Для нейтрализации смеси двух соседних членов гомологического ряда двухосновных предельных карбоновых кислот потребовалось 333 мл раствора гидроксида бария с концентрацией 0,09 моль/л, при этом образовалась смесь солей общей массой 7,31 г. Определите, какие вещества входили в состав смеси и в каком количестве.

Решение

Запишем два уравнения реакций дикарбоновых кислот с гидроксидом бария в общем виде:

Здесь М 1 = а – молярная масса первой дикарбоновой кислоты и М 2 = а + 14 – молярная масса высшего гомолога (+СН 2) этой кислоты.
Молярные массы бариевых солей первой и второй кислот равны соответственно (г/моль):

М = а + 137 – 2 и М = а + 14 + 137 – 2.

Количество вещества низшего гомолога дикарбоновой кислоты обозначено х моль. Такие же количества вещества = х моль других участвующих в реакции (1) веществ – Ва(ОН) 2 и (СН 2) n (СОО) 2 Ва. Аналогично в реакции (2):

(НООС(СН 2) n +1 СООН) = (Ва(ОН) 2) = ((СН 2) n +1 (СОО) 2 Ва) = у моль.

Рассчитаем количество вещества гидроксида бария в объеме V = 333 мл (1/3 л) раствора с концентрацией c мол = 0,09 моль/л:

(Ва(ОН) 2) = c мол V = 0,09 1/3 = 0,03 моль.

Расход основания Ва(ОН) 2 в реакциях (1) и (2) равен:

х + у = 0,03 моль.

Откуда х = 0,03 – у .

В реакции (1) масса полученной соли:

m 1 = М = х (а + 135).

В реакции (2) масса образующейся соли:

m 2 = у (а + 149).

х (а + 135) + у (а + 149) = 7,31.

Подставляя х = 0,03 – у , решим это уравнение относительно у :

(0,03 – у ) (а + 135) + у (а + 149) = 7,31,

у = (3,26 – 0,03а )/14.

Дальнейшее решение осуществляем подбором вариантов значений молярной массы М = а возможных дикарбоновых кислот:

Если М = а = 90, то у = (3,26 – 0,03 90)/14 = 0,56/14 = 0,04 моль, что не соответствует условию задачи, где х + у = 0,03 моль.

Если М = а = 104, то у = (3,26 – 0,03 104)/14 = 0,01 моль.
Такое решение:
а = 104 г/моль, т.е. кислоты – малоновая НООССН 2 СООН (х = 0,02 моль) и янтарная НООССН 2 СН 2 СООН (у = 0,01 моль) – удовлетворяет всем требованиям.

Следующий гомолог: М = а = 118 г/моль не подходит, т.к. тогда количество вещества у = (3,26 – 0,03 118)/14 = –0,02 моль – отрицательная величина.

Ответ. В состав смеси входили кислоты НООССН 2 СООН (0,02 моль) и НООССН 2 СН 2 СООН
(0,01 моль).

УПРАЖНЕНИЯ.

1. Составьте уравнения реакций бензойной кислоты С 6 Н 5 СООН со следующими реагентами:
а)
КОН; б) Аl; в) СаО; г) Na 2 CO 3 ; д) NH 3 (водн.). (Реакции протекают с замещением протона карбоксильной группы.)

2. Запишите уравнения реакций бензойной кислоты, в которых происходит расщепление связи
С–ОН в карбоксильной группе. Используйте реагенты: а) РСl 5 ; б) SOCl 2 ; в) пропанол-1 в присутствии минеральной кислоты НСl.

3. Составьте уравнения реакций, с помощью которых изобутановую кислоту (СН 3) 2 СНСООН можно превратить в следующие соединения: а) изобутират натрия (СН 3) 2 СНСООNa;
б)
этилизобутират (сложный эфир); в) изобутирилхлорид (СН 3) 2 СНС(О)Сl; г) изобутирамид
(СН 3) 2 СНС(О)NH 2 .

4. Составьте уравнения реакций: а) декарбоксилирование бензойной кислоты С 6 Н 5 СООН до бензола под действием горячего раствора КМnО 4 ; б) восстановление бензольного кольца бензойной кислоты (Н 2 , Ni, 20 °С, 1 атм ) с образованием циклогексанкарбоновой кислоты;
в) бромирование бензойной кислоты в метаположение бензольного кольца под действием
Вr 2 в присутствии Fe; г) нитрование бензойной кислоты в метаположение при действии смеси концентрированых кислот НNO 3 /H 2 SO 4 .

5. Неизвестная кислота может быть либо орто-нитробензойной кислотой (t пл = 147 °С), либо орто-аминобензойной (антраниловой) кислотой (t пл = 146 °С). При нейтрализации 0,201 г образца этой кислоты расходуется 12,4 мл раствора щелочи с концентрацией 0,098 моль/л NaOH. Какая это кислота?

6. К 24,4 г смеси уксусной и муравьиной кислот прибавили 227,3 мл 10%-го раствора гидроксида натрия (плотность – 1,1 г/мл). Для связывания избытка щелочи с образованием кислой соли потребовалось 2,8 л (н.у.) оксида серы(IV). Определите состав исходной смеси кислот.

7. После прокаливания натриевой соли пропионовой кислоты RCOONa получен белый остаток, растворимый в воде. Этот остаток изменяет окраску влажного красного лакмуса в синий цвет и реагирует с разбавленной соляной кислотой с выделением пузырьков газа. Какой возможный состав остатка? Напишите уравнение реакции термического разложения натриевой соли пропионовой кислоты во влажном воздухе.

Ответы на упражнения к теме 2

Урок 27

а) С 6 Н 5 СООН + КОН С 6 Н 5 СООК + Н 2 О;
б) 6С 6 Н 5 СООН + 2Аl 2(С 6 Н 5 СОО) 3 Аl + 3Н 2 ;
в) 2С 6 Н 5 СООН + СаО (С 6 Н 5 СОО) 2 Са + Н 2 О;
г) 2С 6 Н 5 СООН + Na 2 CO 3 2С 6 Н 5 СООNa + H 2 O + CO 2 ;
д) С 6 Н 5 СООН + NH 3 С 6 Н 5 СООNН 4 .

5. Найдем количество вещества NaOH в объеме V = 12,4 мл (0,0124 л) раствора с молярной концентрацией c мол (NaOH) = 0,098 моль/л:

(NaOH) = c мол V = 0,098 0,0124 = 1,215 10 –3 моль.

Количества веществ одноосновной кислоты RCOOH и щелочи NaOH, расходуемые в реакции нейтрализации, одинаковые, т.е. (RCOOH) = 1,215 10 –3 моль. Значит, молярная масса неизвестной кислоты М (RCOOH) = m / = 0,201/1,215 10 –3 = 165 г/моль.
Молярные массы возможных кислот следующие:

Ответ. орто -Нитробензойная кислота.

6. Масса NaOH, содержащегося в заданном объеме V = 227,3 мл с концентрацией c (NaOH) = 10% и плотностью = 1,1 г/мл, составляет:
m (NaOH) = c (%)(NaOH) V /100(%) = 10 1,1 227,3/100 = 25 г.

Избыток щелочи (m *) найдем из уравнения реакции:

В реакции со смесью кислот НСООН и СН 3 СООН израсходовалось 20 г NaOH.
Обозначим количества веществ уксусной кислоты и муравьиной кислоты:

(СН 3 СООН) = у моль, (НСООН) = z моль.

Запишем уравнения реакций:

Расход количества вещества щелочи в реакциях (1) и (2) такой же, как у кислот. Зная общую массу смеси кислот (m (смеси) = 24,4 г) и расход щелочи (20 г), составим систему двух уравнений с двумя неизвестными:

Решая систему, найдем: у = 0,1 моль, z = 0,4 моль.

По массе это составляет:

m(CH 3 COOH) = 0,1 60 = 6 г,
m (HCOOH) = 0,4 46 = 18,4 г.

Концентрация в процентах по массе:

с(СН 3 СООН) = (6/24,4) 100(%) = 24,6%.

Ответ. Состав исходной смеси кислот – 6 г (24,6%) СН 3 СООН и 18,4 г (75,4%) НСООН.

7. Уравнение реакции термического разложения натриевой соли пропионовой кислоты во влажном воздухе:

Белый остаток после прокаливания – это сода Na 2 CO 3 . В воде сода растворяется и гидролизуется:

Na 2 CO 3 + H 2 O = NaHCO 3 + NaOH.

Образующаяся щелочь NaOH окрашивает красный лакмус в синий цвет.

Сода реагирует с кислотой НСl с выделением газа СО 2.

КАРБОНОВЫЕ КИСЛОТЫ.

Карбоновыми кислотами называются производные углеводородов, в молекуле которых содержится одна или несколько карбоксильных групп

Общая формула предельных одноосновных карбоновых кислот: С n H 2n O 2

Классификация карбоновых кислот.

1. По числу карбоксильных групп:

Одноосновные (монокарбоновые)

Многоосновные (дикарбоновые, трикарбоновые и т.д.).

    По характеру углеводородного радикала:

Предельные CH 3 -CH 2 -CH 2 -COOH ; бутановая кислота.


Непредельные CH 2 =CH-CH 2 -COOH ; бутен-3-овая кислота.

Ароматические

пара-метилбензойная кислота

НАЗВАНИЯ КАРБОНОВЫХ КИСЛОТ.

Название

её соли и

муравьиная

метановая

HCOOH

уксусная

этановая

CH 3 COOH

пропионовая

пропановая

пропионат

CH 3 CH 2 COOH

масляная

бутановая

CH 3 (CH 2) 2 COOH

валериановая

пентановая

CH 3 (CH 2) 3 COOH

капроновая

гексановая

гексанат

CH 3 (CH 2) 4 COOH

пальмитиновая

гексадекановая

пальмитат

С 15 Н 31 СООН

стеариновая

октадекановая

С 17 Н 35 СООН

акриловая

пропеновая

CH 2 =CH–COOH

олеиновая

СН 3 (СН 2) 7 СН=СН(СН 2) 7 СООН

бензойная

бензойная

C 6 H 5 -COOH

щавелевая

этандиовая

НООС - COOH

ИЗОМЕРИЯ КАРБОНОВЫХ КИСЛОТ.

1. Изомерия углеродной цепи. Начинается с бутановой кислоты (С 3 Н 7 СООН ) , которая существует в виде двух изомеров: масляной (бутановой) и изомасляной (2-метилпропановой) кислот.

2. Изомерия положения кратной связи в непредельных кислотах, например:

СН 2 =СН-СН 2 -СООН СН 3 -СН=СН-СООН

Бутен-3-овая кислота Бутен-2-овая кислота

(винилуксусная кислота) (кротоновая кислота)

3. Цис-, транс-изомерия в непредельных кислотах, например:

4. Межклассовая изомерия : Карбоновые кислоты изомерны сложным эфирам:

Уксусная кислота СН 3 -СООН и метилформиат Н-СООСН 3

5. Изомерия положения функциональных групп у гетерофункционалъных кислот.

Например, существуют три изомера хлормасляной кислоты: 2-хлорбутановая, 3-хлорбутановая и 4-хлорбутановая.

СТРОЕНИЕ КАРБОКСИЛЬНОЙ ГРУППЫ.

Карбоксильная группа сочетает в себе две функциональные группы – карбонил и гидроксил, взаимно влияющие друг на друга

Кислотные свойства карбоновых кислот обусловлены смещением электронной плотности к карбонильному кислороду и вызванной этим дополнительной (по сравнению со спиртами) поляризацией связи О–Н.
В водном растворе карбоновые кислоты диссоциируют на ионы:

Растворимость в воде и высокие температуры кипения кислот обусловлены образованием межмолекулярных водородных связей. С увеличением молекулярной массы растворимость кислот в воде уменьшается.

ПРОИЗВОДНЫЕ КАРБОНОВЫХ КИСЛОТ – в них гидроксогруппа замещена на некоторые другие группы. Все они при гидролизе образуют карбоновые кислоты.

Сложные эфиры

Галогенангидриды

Ангидриды

ПОЛУЧЕНИЕ КАРБОНОВЫХ КИСЛОТ.

1. Окисление спиртов в жестких условиях – раствором перманганата или дихромата калия в кислой среде при нагревании.

2.Окисление альдегидов : раствором перманганата или дихромата калия в кислой среде при нагревании, реакцией серебряного зеркала, гидроксидом меди при нагревании.

3. Щелочной гидролиз трихлоридов :

R-CCl 3 + 3NaOH  + 3NaCl

неустойчивое вещество

[ R - C ( OH ) 3 ] RCOOH + H 2 O

4. Гидролиз сложных эфиров.

R-COOR 1 + KOH  RCOOK + R 1 OH

RCOOK + HCl  R-COOH + KCl

5. Гидролиз нитрилов, ангидридов, солей.

1)нитрил: R -CN + 2H 2 O –(H +) RCOOH

2)ангидрид: (R -COO ) 2 O + H 2 O 2RCOOH

3)натриевая соль: R -COONa +HCl R -COOH + NaCl

6. Взаимодействие реактива Гриньяра с СО 2:

R-MgBr + CO 2  R-COO-MgBr

R-COO-MgBr -(+H 2 O) R-COOH +Mg(OH)Br

7. Муравьиную кислоту получают нагреванием оксида углерода (II) с гидроксидом натрия под давлением:

NaOH + CO –(200 o C,p) HCOONa

2HCOONa+ H 2 SO 4  2HCOOH + Na 2 SO 4

8. Уксусную кислоту получают каталитическим окислением бутана :

2C 4 H 10 + 5O 2  4CH 3 -COOH + 2H 2 O

9. Для получения бензойной кислоты можно использовать окисление монозамещенных гомологов бензола кислым раствором перманганата калия:

5C 6 H 5 –CH 3 +6KMnO 4 +9H 2 SO 4  5C 6 H 5 -COOH+3K 2 SO 4 + MnSO 4 + 14H 2 O

ХИМИЧЕСКИЕ СВОЙСТВА КАРБОНОВЫХ КИСЛОТ.

1. Кислотные свойства – замещение атома Н в карбоксильной группе на металл или ион аммония.

1.Взаимодействие с металлами

2CH 3 COOH+Ca  (CH 3 COO) 2 Ca+H 2

ацетаткальция

2.Взаимодействие с оксидами металлов

2CH 3 COOH+BaO  (CH 3 COO) 2 Ba+H 2 O

3.Реакция нейтрализации с гидроксидами металлов

2CH 3 COOH+Cu(OH) 2  (CH 3 COO) 2 Cu + 2H 2 O

4.Взаимодействие с солями более слабых и летучих (или нерастворимых) кислот

2CH 3 COOH+CaCO 3  (CH 3 COO) 2 Ca + H 2 O + CO 2

4*. Качественная реакция на карбоновые кислоты: взаимодействие с содой (гидрокарбонатом натрия) или другими карбонатами и гидрокарбонатами.

В результате наблюдается выделение углекислого газа.

2CH 3 COOH+Na 2 CO 3 à 2CH 3 COONa+H 2 O+CO 2

2. Замещение гидроксильной группы:

5 .Реакция этерификации

6.Образование галоген-ангидридов – с помощью хлоридов фосфора (III ) и (V ).

7. Образование амидов:

8. Получение ангидридов.

С помощью Р 2 О 5 можно дегидратировать карбоновую кислоту – в результате получается ангидрид.

2СН 3 – СООН + Р 2 О 5 (СН 3 СО) 2 О + НРО 3

3. Замещение атома водорода при атоме углерода, ближайшем к карбоксильной группе ( -углеродный атом)

9.Галогенирование кислот – реакция идёт в присутствии красного фосфора или на свету.

CH 3 -COOH+Br 2 –(Р кр ) CH 2 -COOH + НВr

Особенности муравьиной кислоты.

1. Разложение при нагревании.

Н- СООН –(H 2 SO 4 конц,t) CO + H 2 O

2. Реакция серебряного зеркала и с гидроксидом меди (II ) – муравьиная кислота проявляет свойства альдегидов.

Н-COOH +2OH (NH 4) 2 СО 3 +2 Ag +2NH 3 +H 2 O

H-COOH + Cu(OH) 2 –t CO 2 + Cu 2 O + H 2 O

3. Окисление хлором и бромом, а также азотной кислотой.

H-COOH + Cl 2  CO 2 + 2HCl

Особенности бензойной кислоты.

1. Разложение при нагревании – декарбоксилирование.

При нагревании бензойной кислоты она разлагается на бензол и углекислый газ:


-(t) + CO 2

2. Реакции замещения в ароматическом кольце.

Карбоксильная группа является электроноакцепторной, она уменьшает электронную плотность бензольного кольца и является мета-ориентантом.

HNO 3 –(H 2 SO 4 ) +H 2 O

Особенности щавелевой кислоты.

1. Разложение при нагревании

2. Окисление перманганатом калия.

Особенности непредельных кислот (акриловой и олеиновой).

1. Реакции присоединения.

Присоединение воды и бромоводорода к акриловой кислоте происходит против правила Марковникова, т.к. карбоксильная группа является электроноакцепторной:

СН 2 = СН- СООН + НBr Br-CH 2 -CH 2 -COOH

Также к непредельным кислотам можно присоединять галогены и водород:

С 17 Н 33 -СООН+H 2 C 17 H 35 -COOH (стеариновая)

2. Реакции окисления

При мягком окислении акриловой кислоты образуется 2 гидроксогруппы:

3СН 2 =СН-СООН+2KMnO 4 +2H 2 O 2CH 2 (OH )-CH (OH )-COO К + CH 2 (OH )-CH (OH )-COOH +2MnO 2

Свойства солей карбоновых кислот.

1. Обменные реакции с более сильными кислотами и со щелочами.

CH 3 -COONa + HCl  CH 3 -COOH + NaCl

(CH 3 -COO) 2 Cu + KOH  Cu(OH) 2 ↓+ CH 3 COOK

2. Термическое разложение солей двухвалентных металлов (кальция, магния, бария)- образуются кетоны.

(CH 3 -COO) 2 Ca -(t) CaCO 3 + CH 3 -C-CH 3

3. Сплавление солей щелочных металлов со щелочью (реакция Дюма)- получаются алканы.

CH 3 -COONa + NaOH -(t) CH 4 + Na 2 CO 3

4. Электролиз водных растворов солей карбоновых кислот (реакция Кольбе).

2CH 3 -COONa +2Н 2 О -(эл.ток)

C 2 H 6 +2CO 2 + H 2 +2NaOH

анодкатод

Свойства галогенангидридов

1. Гидролиз – получается кислота.

CH 3 -COCl + H 2 O  CH 3 -COOH + HCl

2. Реакции ацилирования бензола, аминов, солей фенола.

CH 3 -COCl+ -(AlCl 3) HCl+

3. Получение амидов и сложных эфиров

CH 3 -COCl + NH 3  CH 3 -CONH 2 + NH 4 Cl

С 6 Н 5 - ОNa+ C 2 H 5 -C=O -(t) NaCl + C 6 H 5 -O-C=O

Cl C 2 H 5

КАРБОНОВЫЕ КИСЛОТЫ.

Карбоновыми кислотами называются производные углеводородов, в молекуле которых содержится одна или несколько карбоксильных групп

Общая формула предельных одноосновных карбоновых кислот: С n H 2n O 2


Классификация карбоновых кислот.

1. По числу карбоксильных групп:

Одноосновные (монокарбоновые)


Многоосновные (дикарбоновые, трикарбоновые и т.д.).



  1. По характеру углеводородного радикала:

Предельные CH 3 -CH 2 -CH 2 -COOH ; бутановая кислота.


- непредельные CH 2 =CH-CH 2 -COOH ; бутен-3-овая кислота.
- ароматические

пара-метилбензойная кислота
НАЗВАНИЯ КАРБОНОВЫХ КИСЛОТ.


Название

Формула

кислоты


кислоты

её соли и

(эфиры)


муравьиная

метановая

формиат

HCOOH

уксусная

этановая

ацетат

CH 3 COOH

пропионовая

пропановая

пропионат

CH 3 CH 2 COOH

масляная

бутановая

бутират

CH 3 (CH 2) 2 COOH

валериановая

пентановая

валерат

CH 3 (CH 2) 3 COOH

капроновая

гексановая

гексанат

CH 3 (CH 2) 4 COOH

пальмитиновая

гексадекановая

пальмитат

С 15 Н 31 СООН

стеариновая

октадекановая

стеарат

С 17 Н 35 СООН

акриловая

пропеновая

акрилат

CH 2 =CH–COOH

олеиновая

цис -9-октадеценовая

олеат

СН 3 (СН 2) 7 СН=СН(СН 2) 7 СООН

бензойная

бензойная

бензоат

C 6 H 5 -COOH

щавелевая

этандиовая

оксалат

НООС - COOH

ИЗОМЕРИЯ КАРБОНОВЫХ КИСЛОТ.

1. Изомерия углеродной цепи. Начинается с бутановой кислоты (С 3 Н 7 СООН ) , которая существует в виде двух изомеров: масляной (бутановой) и изомасляной (2-метилпропановой) кислот.
2. Изомерия положения кратной связи в непредельных кислотах, например:

СН 2 =СН-СН 2 -СООН СН 3 -СН=СН-СООН

Бутен-3-овая кислота Бутен-2-овая кислота

(винилуксусная кислота) (кротоновая кислота)
3. Цис-, транс-изомерия в непредельных кислотах, например:

4. Межклассовая изомерия : Карбоновые кислоты изомерны сложным эфирам:

Уксусная кислота СН 3 -СООН и метилформиат Н-СООСН 3


5. Изомерия положения функциональных групп у гетерофункционалъных кислот.

Например, существуют три изомера хлормасляной кислоты: 2-хлорбутановая, 3-хлорбутановая и 4-хлорбутановая.


СТРОЕНИЕ КАРБОКСИЛЬНОЙ ГРУППЫ.

Карбоксильная группа сочетает в себе две функциональные группы – карбонил и гидроксил, взаимно влияющие друг на друга

Кислотные свойства карбоновых кислот обусловлены смещением электронной плотности к карбонильному кислороду и вызванной этим дополнительной (по сравнению со спиртами) поляризацией связи О–Н.
В водном растворе карбоновые кислоты диссоциируют на ионы:

Растворимость в воде и высокие температуры кипения кислот обусловлены образованием межмолекулярных водородных связей. С увеличением молекулярной массы растворимость кислот в воде уменьшается.


ПРОИЗВОДНЫЕ КАРБОНОВЫХ КИСЛОТ – в них гидроксогруппа замещена на некоторые другие группы. Все они при гидролизе образуют карбоновые кислоты.

Соли

Сложные эфиры

Галогенангидриды

Ангидриды

Амиды.










ПОЛУЧЕНИЕ КАРБОНОВЫХ КИСЛОТ.


1. Окисление спиртов в жестких условиях – раствором перманганата или дихромата калия в кислой среде при нагревании.



2.Окисление альдегидов : раствором перманганата или дихромата калия в кислой среде при нагревании, реакцией серебряного зеркала, гидроксидом меди при нагревании.



3. Щелочной гидролиз трихлоридов :

R-CCl 3 + 3NaOH  + 3NaCl

неустойчивое вещество

 RCOOH + H 2 O


4. Гидролиз сложных эфиров.

R-COOR 1 + KOH  RCOOK + R 1 OH

RCOOK + HCl  R-COOH + KCl



5. Гидролиз нитрилов, ангидридов, солей.

1)нитрил: R-CN + 2H 2 O –(H +) RCOOH

2)ангидрид: (R-COO) 2 O + H 2 O  2RCOOH

3)натриевая соль: R-COONa+HClR-COOH + NaCl


6. Взаимодействие реактива Гриньяра с СО 2:

R-MgBr + CO 2  R-COO-MgBr

R-COO-MgBr -(+H 2 O) R-COOH +Mg(OH)Br



7. Муравьиную кислоту получают нагреванием оксида углерода (II) с гидроксидом натрия под давлением:

NaOH + CO –(200 o C,p) HCOONa

2HCOONa+ H 2 SO 4 2HCOOH + Na 2 SO 4



8. Уксусную кислоту получают каталитическим окислением бутана :

2C 4 H 10 + 5O 2  4CH 3 -COOH + 2H 2 O

9. Для получения бензойной кислоты можно использовать окисление монозамещенных гомологов бензола кислым раствором перманганата калия:

5C 6 H 5 –CH 3 +6KMnO 4 +9H 2 SO 4 5C 6 H 5 -COOH+3K 2 SO 4 + MnSO 4 + 14H 2 O

ХИМИЧЕСКИЕ СВОЙСТВА КАРБОНОВЫХ КИСЛОТ.

1. Кислотные свойства – замещение атома Н в карбоксильной группе на металл или ион аммония.


1.Взаимодействие с металлами

2CH 3 COOH+Ca (CH 3 COO) 2 Ca+H 2

ацетат кальция



2.Взаимодействие с оксидами металлов

2CH 3 COOH+BaO (CH 3 COO) 2 Ba+H 2 O

3.Реакция нейтрализации с гидроксидами металлов

2CH 3 COOH+Cu(OH) 2  (CH 3 COO) 2 Cu + 2H 2 O

4.Взаимодействие с солями более слабых и летучих (или нерастворимых) кислот

2CH 3 COOH+CaCO 3  (CH 3 COO) 2 Ca + H 2 O + CO 2

4*. Качественная реакция на карбоновые кислоты: взаимодействие с содой (гидрокарбонатом натрия) или другими карбонатами и гидрокарбонатами.

В результате наблюдается выделение углекислого газа.

2CH 3 COOH+Na 2 CO 3 à 2CH 3 COONa+H 2 O+CO 2 

2. Замещение гидроксильной группы:


5.Реакция этерификации




6.Образование галоген-ангидридов – с помощью хлоридов фосфора (III) и (V).



7. Образование амидов:




8. Получение ангидридов.

С помощью Р 2 О 5 можно дегидратировать карбоновую кислоту – в результате получается ангидрид.

2СН 3 – СООН + Р 2 О 5  (СН 3 СО) 2 О + НРО 3


3. Замещение атома водорода при атоме углерода, ближайшем к карбоксильной группе (-углеродный атом)


9.Галогенирование кислот – реакция идёт в присутствии красного фосфора или на свету.

CH 3 -COOH+Br 2 –(Р кр) CH 2 -COOH + НВr

Особенности муравьиной кислоты.


1. Разложение при нагревании.

Н-СООН –(H 2 SO 4 конц,t) CO + H 2 O

2. Реакция серебряного зеркала и с гидроксидом меди (II) – муравьиная кислота проявляет свойства альдегидов.

Н-COOH+2OH(NH 4) 2 СО 3 +2 Ag +2NH 3 +H 2 O
H-COOH + Cu(OH) 2 –t CO 2 + Cu 2 O + H 2 O

3. Окисление хлором и бромом, а также азотной кислотой.

H-COOH + Cl 2  CO 2 + 2HCl

Особенности бензойной кислоты.


1. Разложение при нагревании – декарбоксилирование.

При нагревании бензойной кислоты она разлагается на бензол и углекислый газ:


2. Реакции замещения в ароматическом кольце.

Карбоксильная группа является электроноакцепторной, она уменьшает электронную плотность бензольного кольца и является мета-ориентантом.
+ HNO 3 –(H 2 SO 4) +H 2 O

Особенности щавелевой кислоты.


1. Разложение при нагревании



2. Окисление перманганатом калия.


Особенности непредельных кислот (акриловой и олеиновой).


1. Реакции присоединения.

Присоединение воды и бромоводорода к акриловой кислоте происходит против правила Марковникова, т.к. карбоксильная группа является электроноакцепторной:

СН 2 =СН-СООН + НBr  Br-CH 2 -CH 2 -COOH

Также к непредельным кислотам можно присоединять галогены и водород:

С 17 Н 33 -СООН+H 2  C 17 H 35 -COOH(стеариновая)



2. Реакции окисления

При мягком окислении акриловой кислоты образуется 2 гидроксогруппы:

3СН 2 =СН-СООН+2KMnO 4 +2H 2 O 2CH 2 (OH)-CH(OH)-COOК + CH 2 (OH)-CH(OH)-COOH +2MnO 2


Свойства солей карбоновых кислот.

Свойства галогенангидридов

СЛОЖНЫЕ ЭФИРЫ

это соединения, содержащие карбоксильную группу, связанную с двумя алкильными радикалами.

Общая формула сложных эфиров такая же, как у карбоновых кислот: C n H 2 n O 2


НОМЕНКЛАТУРА СЛОЖНЫХ ЭФИРОВ. Названия сложных эфиров определяются названиями кислоты и спирта, из которых они образуются.

ПОЛУЧЕНИЕ СЛОЖНЫХ ЭФИРОВ.

1)Cложные эфиры могут быть получены при взаимодействии карбоновых кислот со спиртами (реакция этерификации ). Катализаторами являются минеральные кислоты.

2) Сложные эфиры фенолов нельзя получить с помощью этерификации , для их получения используют реакцию фенолята с галогенангидридом кислоты:

С 6 Н 5 -О - Na + + C 2 H 5 –C=O  NaCl + C 6 H 5 –O-C=O

Cl C 2 H 5

Фениловый эфир пропановой кислоты (фенилпропаноат)

Виды изомерии сложных эфиров.

1. Изомерия углеродной цепи начинается по кислотному остатку с бутановой кислоты, по спиртовому остатку - с пропилового спирта, например, этилбутаноату изомерны этилизобутаноат, пропилацетат и изопропилацетат.

2. Изомерия положения сложноэфирной группировки -СО-О-. Этот вид изомерии начинается со сложных эфиров, в молекулах которых содержится не менее 4 атомов углерода, например этилацетат и метилпропионат.

3. Межклассовая изомерия с карбоновыми кислотами.
СВОЙСТВА СЛОЖНЫХ ЭФИРОВ.
1. Гидролиз сложных эфиров.

Реакция этерификации обратима. Обратный процесс – расщепление сложного эфира при действии воды с образованием карбоновой кислоты и спирта – называют гидролизом сложного эфира.

Кислотный гидролиз обратим:

Щелочной гидролиз протекает необратимо:

Эта реакция называется омылением сложного эфира.


2. Реакция восстановления. Восстановление сложных эфиров водородом приводит к образованию двух спиртов:

Образование галогеналканов при взаимодействии спиртов с галогеноводородами - обратимая реакция. Поэтому понятно, что спирты могут быть получены при гидролизе галогеналканов - реакции этих соединений с водой:

Многоатомные спирты можно получить при гидролизе галогеналканов, содержащих более одного атома галогена в молекуле. Например:

Гидратация алкенов

Гидратация алкенов - присоединение воды по π — связи молекулы алкена, например:

Гидратация пропена приводит в соответствии с правилом Марковникова к образованию вторичного спирта - пропанола-2:

Гидрирование альдегидов и кетонов

Окисление спиртов в мягких условиях приводит к образованию альдегидов или кетонов. Очевидно, что спирты могут быть получены при гидрировании (восстановлении водородом, присоединении водорода) альдегидов и кетонов:

Окисление алкенов

Гликоли, как уже отмечалось, могут быть получены при окислении алкенов водным раствором перманганата калия. Например, этиленгликоль (этандиол-1,2) образуется при окислении этилена (этена):

Специфические способы получения спиртов

1. Некоторые спирты получают характерными только для них способами. Так, метанол в промышленности получают реакцией взаимодействия водорода с оксидом углерода (II) (угарным газом) при повышенном давлении и высокой температуре на поверхности катализатора (оксида цинка):

Необходимую для этой реакции смесь угарного газа и водорода, называемую также «синтез-газ», получают при пропускании паров воды над раскаленным углем:

2. Брожение глюкозы . Этот способ получения этилового (винного) спирта известен человеку с древнейших времен:

Основными способами получения кислородсодержащих соединений (спиртов) являются: гидролиз галогеналканов, гидратация алкенов, гидрирование альдегидов и кетонов, окисление алкенов, а также получение метанола из «синтез-газа» и сбраживание сахаристых веществ.

Способы получения альдегидов и кетонов

1. Альдегиды и кетоны могут быть получены окислением или дегидрированием спиртов . При окислении или дегидрировании первичных спиртов могут быть получены альдегиды, а вторичных спиртов - кетоны:

3CH 3 –CH 2 OH + K 2 Cr 2 O 7 + 4H 2 SO 4 = 3CH 3 –CHO + K 2 SO 4 + Cr 2 (SO 4) 3 + 7H 2 O

2. Реакция Кучерова. Из ацетилена в результате реакции получается уксусный альдегид, из гомологов ацетилена - кетоны:

3. При нагревании кальциевых или бариевых солей карбоновых кислот образуются кетон и карбонат металла:

Способы получения карбоновых кислот

1. Карбоновые кислоты могут быть получены окислением первичных спиртов или альдегидов :

3CH 3 –CH 2 OH + 2K 2 Cr 2 O 7 + 8H 2 SO 4 = 3CH 3 –COOH + 2K 2 SO 4 + 2Cr 2 (SO 4) 3 + 11H 2 O

5CH 3 –CHO + 2KMnO 4 + 3H 2 SO 4 =5CH 3 –COOH + 2MnSO 4 + K 2 SO 4 + 3H 2 O,

3CH 3 –CHO + K 2 Cr 2 O 7 + 4H 2 SO 4 = 3CH 3 –COOH + Cr 2 (SO 4) 3 + K 2 SO 4 + 4H 2 O,

CH 3 –CHO + 2OH CH 3 –COONH 4 + 2Ag + 3NH 3 + H 2 O.

Но при окислении метаналя аммиачным раствором оксида серебра, образуется карбонат аммония, а не муравьиная кислота:

HCHО + 4OH = (NH 4) 2 CO 3 + 4Ag + 6NH 3 + 2H 2 O.

2. Ароматические карбоновые кислоты образуются при окислении гомологов бензола :

5C 6 H 5 –CH 3 + 6KMnO 4 + 9H 2 SO 4 = 5C 6 H 5 COOH + 6MnSO 4 + 3K 2 SO 4 + 14H 2 O,

5C 6 H 5 –C 2 H 5 + 12KMnO 4 + 18H 2 SO 4 = 5C 6 H 5 COOH + 5CO 2 + 12MnSO 4 + 6K 2 SO 4 + 28H 2 O,

C 6 H 5 –CH 3 + 2KMnO 4 = C 6 H 5 COOK + 2MnO 2 + KOH + H 2 O

3. Гидролиз различных производных карбоновых кислот также приводит к получению кислот. Так, при гидролизе сложного эфира образуются спирт и карбоновая кислота. Реакции этерификации и гидролиза, катализируемой кислотой, обратимы:

4. Гидролиз сложного эфира под действием водного раствора щелочи протекает необратимо, в этом случае из сложного эфира образуется не кислота, а ее соль.