К анаэробному способу дыхания способны. Шпаргалка: Аэробное и анаэробное дыхание растений

Дыхание - совокупность реакций биологического окисления органических енерговмисних веществ с выделением энергии, необходимой для жизнедеятельности организма. Дыхание является процессом, при котором атомы водорода (электроны) переносятся от органических веществ на молекулярный кислород. Выделяют два основных типа дыхания: анаэробное и аэробное.

Аэробное дыхание - совокупность процессов, осуществляющих окисление органических веществ и получения энергии с участием кислорода. Расщепление органических веществ является полным и происходит с образованием конечных продуктов окисления Н2О и СО2. Характерно аэробное дыхание для подавляющего большинства организмов и проходит в митохондриях клетки. Аэробные организмы в процессе дыхания могут окиснюваты различные органические соединения: углеводы, жиры, белки и т. В аэробных организмов окисления протекает с использованием кислорода в качестве акцептора (приемника) электрона до углекислого газа и воды. Аэробное дыхание - самый способ образования энергии. В основе - полное расщепление, которое происходит с участием реакций бескислородного и кислородного этапов энергетического обмена. Аэробное дыхание играет основную роль в обеспечении клеток энергией и рощепленни веществ до конечных продуктов окисления - воды и углекислого газа.

Ядро - это крепость, где спрятана главная разгадка самовоспроизведению жизни.

Клеточное дыхание - это окисление органических веществ в клетке, в результате которого синтезируются молекулы АТФ. Исходным сырьем (субстратом) обычно служат углеводы, реже жиры и еще реже белки. Наибольшее количество молекул АТФ дает окисление кислородом, меньшее – окисление другими веществами и переносом электронов.

Углеводы, или полисахариды, перед использованием в качестве субстрата клеточного дыхания распадаются до моносахаридов. Так у растений крахмал, а у животных гликоген гидролизуются до глюкозы.

Глюкоза является основным источником энергии почти для всех клеток живых организмов.

Первый этап окисления глюкозы - гликолиз. Он не требует кислорода и характерен как при анаэробном, так и аэробном дыхании.

Биологическое окисление

Клеточное дыхание включает в себя множество окислительно-восстановительных реакций, в которых происходит перемещение водорода и электронов от одних соединений (или атомов) к другим. При потери электрона каким-либо атомом происходит его окисление; при присоединении электрона - восстановление. Окисляемое вещество - это донор, а восстанавливаемое - акцептор водорода и электронов. Окислительно-восстановительные реакции, протекающие в живых организмах носят название биологического окисления, или клеточного дыхания.

Обычно при окислительных реакциях происходит выделение энергии. Причина этого кроется в физических законах. Электроны в окисляемых органических молекулах находятся на более высоком энергетическом уровне, чем в продуктах реакции. Электроны, переходя с более высокого на более низкий энергетический уровень, высвобождают энергию. Клетка умеет фиксировать ее в связях молекул - универсальном «топливе» живого.

Наиболее распространенным в природе конечным акцептором электронов является кислород, который восстанавливается. При аэробном дыхании в результате полного окисления органических веществ образуются углекислый газ и вода.

Биологическое окисление протекает по-этапно, в нем участвуют множество ферментов и соединения, переносящие электроны. При ступенчатом окислении электроны перемещаются по цепи переносчиков. На определенных этапах цепи происходит выделение порции энергии, достаточной для синтеза АТФ из АДФ и фосфорной кислоты.

Биологическое окисление весьма эффективно по-сравнению с различными двигателями. Около половины выделяющейся энергии в конечном итоге фиксируется в макроэргических связях АТФ. Другая часть энергии рассеивается в виде тепла. Поскольку процесс окисления ступенчатый, то тепловая энергия выделяется понемногу и не повреждает клетки. В то же время она служит для поддержания постоянной температуры тела.

Аэробное дыхание

Различные этапы клеточного дыхания у аэробных эукариот происходят

    в матриксе митохондрий – , или цикл трикарбоновых кислот,

    на внутренней мембране митохондрий – , или дыхательная цепь.

На каждом из этих этапов из АДФ синтезируется АТФ, больше всего на последнем. Кислород в качестве окислителя используется только на этапе окислительного фосфорилирования.

Суммарные реакции аэробного дыхания выглядит следующим образом.

Гликолиз и цикл Кребса: C 6 H 12 O 6 + 6H 2 O → 6CO 2 + 12H 2 + 4АТФ

Дыхательная цепь: 12H 2 + 6O 2 → 12H 2 O + 34АТФ

Таким образом биологическое окисление одной молекулы глюкозы дает 38 молекул АТФ. На самом деле нередко бывает меньше.

Анаэробное дыхание

При анаэробном дыхании в окислительных реакциях акцептор водорода НАД не передает водород в конечном итоге на кислород, которого в данном случае нет.

В качестве акцептора водорода может быть использована пировиноградная кислота, образующаяся при гликолизе.

У дрожжей пируват сбраживается до этанола (спиртовое брожение). При этом в процессе реакций образуется также углекислый газ и используется НАД:

CH 3 COCOOH (пируват) → CH 3 CHO (ацетальдегид) + CO 2

CH 3 CHO + НАД · H 2 → CH 3 CH 2 OH (этанол) + НАД

Молочнокислое брожение происходит в животных клетках, испытывающих временный недостаток кислорода, и у ряда бактерий:

CH 3 COCOOH + НАД · H 2 → CH 3 CHOHCOOH (молочная кислота) + НАД

Оба брожения не дают выхода АТФ. Энергию в данном случае дает только гликолиз, и составляет она всего две молекулы АТФ. Значительная часть энергии глюкозы так и не извлекается. Поэтому анаэробное дыхание считается малоэффективным.

Введение

1. Аэробное дыхание

1.1 Окислительное фосфолирование

2. Анаэробное дыхание

2.1 Типы анаэробного дыхания

4.Список литературы

Введение

Дыхание присуще всем живым организмам. Оно представляет собой окислительный распад органических веществ, синтезированных в процессе фотосинтеза, протекающих с потреблением кислорода и выделением диоксида углерода. А.С. Фаминцын рассматривал фотосинтез и дыхание как две последовательные фазы питания растений: фотосинтез готовит углеводы, дыхание перерабатывает их в структурную биомассу растения, образуя в процессе ступенчатого окисления реакционноспособные вещества и освобождая энергию, необходимую для их превращения и процессов жизнедеятельности в целом. Суммарное уравнение дыхания имеет вид:

CHO + 6O → 6CO + 6HO + 2875кДж.

Из этого уравнения становится ясно, почему именно скорость газообмена используют для оценки интенсивности дыхания. Оно было предложено в 1912 г. В. И. Палладиным, который считал, что дыхание состоит из двух фаз - анаэробной и аэробной. На анаэробном этапе дыхания, идущем в отсутствие кислорода, глюкоза окисляется за счет отнятия водорода (дегидрирования), который, по мнению ученого, передается на дыхательный фермент. Последний при этом восстанавливается. На аэробном этапе происходит регенерация дыхательного фермента в окислительную форму. В. И. Палладин впервые показал, что окисление сахара идет за счет непосредственного окисления его кислородом воздуха, поскольку кислород не встречается с углеродом дыхательного субстрата, а связано с его дегидрированием.

Существенный вклад в изучение сути окислительных процессов и химизма процесса дыхания внесли как отечественные (И.П. Бородин, А.Н.Бах, С.П. Костычев, В.И. Палладин), так и зарубежные (А.Л. Лавуазье, Г. Виланд, Г. Кребс) исследователи.

Жизнь любого организма неразрывно связана с непрерывным использованием свободной энергии, генерируемой при дыхании. Неудивительно, что изучению роли дыхания в жизни растения в последнее время отводят центральное место в физиологии растений.

1. Аэробное дыхание

Аэробное дыхание - это окислительный процесс, в ходе которого расходуется кислород. При дыхании субстрат без остатка расщепляется до бедных энергией неорганических веществ с высоким выходом энергии. Важнейшими субстратами для дыхания служат углеводы. Кроме того, при дыхании могут расходоваться жиры и белки.

Аэробное дыхание включает два основных этапа:

- бескислородный, в процессе, которого происходит постепенное расщепление субстрата с высвобождением атомов водорода и связыванием с коферментами (переносчиками типа НАД и ФАД);

- кислородный, в ходе которого происходит дальнейшее отщепление атомов водорода от производных дыхательного субстрата и постепенное окисление атомов водорода в результате переноса их электронов на кислород.

На первом этапе вначале высокомолекулярные органические вещества (полисахариды, липиды, белки, нуклеиновые кислоты и др.) под действием ферментов расщепляются на более простые соединения (глюкозу, высшие карбоновые кислоты, глицерол, аминокислоты, нуклеотиды и т.п.) Этот процесс происходит в цитоплазме клеток и сопровождается выделением небольшого количества энергии, которая рассеивается в виде тепла. Далее происходит ферментативное расщепление простых органических соединений.

Примером такого процесса является гликолиз - многоступенчатое бескислородное расщепление глюкозы. В реакциях гликолиза шестиуглеродная молекула глюкозы (С) расщепляется на две трехуглеродные молекулы пировиноградной кислоты (С). При этом образуется две молекулы АТФ, и выделяются атомы водорода. Последние присоединяются к переносчику НАД (никотинамидадениндинклеотид), который переходит в свою восстановительную форму НАД ∙ Н + Н. НАД кофермент, близкий по своей структуре к НАДФ. Оба они представляют собой производные никотиновой кислоты - одного из витаминов группы В. Молекулы обоих коферментов электроположительны (у них отсутствует один электрон) и могут играть роль переносчика как электронов, так и атомов водорода. Когда акцептируется пара атомов водорода, один из атомов диссоциирует на протон и электрон:

а второй присоединяется к НАД или НАДФ целиком:

НАД+ Н + [Н+ е] → НАД ∙ Н + Н.

Свободный протон позднее используется для обратного окисления кофермента. Суммарно реакция гликолиза имеет вид

CHO +2АДФ + 2НРО + 2 НАД→

2СНО + 2АТФ + 2 НАД ∙ Н + Н+ 2 HO

Продукт гликолиза - пировиноградная кислота (СНО) - заключает в себе значительную часть энергии, и дальнейшее ее высвобождение осуществляется в митохондриях. Здесь происходит полное окисление пировиноградной кислоты до COи HO. Этот процесс можно разделить на три основные стадии:

  1. окислительное декарбоксилирование пировиноградной кислоты;
  2. цикл трикарбоновых кислот (цикл Кребса);
  3. заключительная стадия окисления - электронтранспортная цепь.

На первой стадии пировиноградная кислота взаимодействует с веществом, которое называют коферментом А, в результате чего образуется ацетилкофермент а с высокоэнергетической связью. При этом от молекулы пировиноградной кислоты отщепляется молекула CO(первая) и атомы водорода, которые запасаются в форме НАД ∙ Н + Н.

Вторая стадия - цикл Кребса (рис. 1)

В цикл Кребса вступает ацетил-КоА, образованный на предыдущей стадии. Ацетил-КоА взаимодействует со щавелево-уксусной кислотой, в результате образуется шестиуглеродная лимонная кислота. Для этой реакции требуется энергия; ее поставляет высокоэнергетическая связь ацетил-КоА. В конце цикла щавелево-лимонная кислота регенерируется в прежнем виде. Теперь она способна вступить в реакцию с новой молекулой ацетил-КоА, и цикл повторяется. Суммарно реакция цикла может быть выражена следующим уравнением:

ацетил-КоА + 3HO + 3НАД+ ФАД + АДФ + НРО→

КоА + 2CO+ 3НАД ∙ Н + Н+ФАД ∙ H+ АТФ.

Таким образом, в результате распада одной молекулы пировиноградной кислоты в аэробной фазе (декарбоксилирование ПВК и цикла Кребса) выделяется 3CO, 4 НАД ∙ Н + Н, ФАД ∙ H. Суммарно реакцию гликолиза, окислительного декарбоксилирования и цикла Кребса можно записать в следующем виде:

CHO + 6 HO + 10 НАД + 2ФАД →

6CO+ 4АТФ + 10 НАД ∙ Н + Н+ 2ФАД ∙ H.

Третья стадия - электротранспортная цепь.

Пары водородных атомов, отщепляемые от промежуточных продуктов в реакциях дегидрирования при гликолизе и в цикле Кребса, в конце концов, окисляются молекулярным кислородом до HO с одновременным фосфолированием АДФ в АТФ. Происходит это тогда, когда водород, отделившийся от НАД ∙ Hи ФАД ∙ H, передается по цепи переносчиков, встроенных во внутреннюю мембрану митохондрий. Пары атомов водорода 2Н можно рассматривать как 2 Н + 2е. Движущей силой транспорта атомов водорода в дыхательной цепи является разность потенциалов.

С помощью переносчиков ионы водорода Нпереносятся с внутренней стороны мембраны на ее внешнюю сторону, иначе говоря, из матрикса митохондрии в межмембранное пространство (рис. 2).

При переносе пары электронов от над на кислород они пересекают мембрану три раза, и этот процесс сопровождается выделением на внешнюю сторону мембраны шести протонов. На заключительном этапе протоны переносятся на внутреннюю сторону мембраны и акцептируются кислородом:

½ O + 2е → O.

В результате такого переноса ионов Нна внешнюю сторону мембраны митохондрий в перимитохондриальном пространстве создается концентрация их, т.е. возникает электрохимический градиент протонов.

Когда протонный градиент достигает определенной величины, ионы водорода из Н-резервуара движутся по специальным каналам в мембране, и их запас энергии используется для синтеза АТФ. В матриксе они соединяются с заряженными частичками О, и образуется вода: 2Н+ О²ˉ → HO.

1.1 Окислительное фосфолирование

Процесс образования АТФ в результате переноса ионов Нчерез мембрану митохондрии получил название окислительного фосфолирования. Он осуществляется при участии фермента АТФ-синтетазы. Молекулы АТФ-синтетазы располагаются в виде сферических гранул на внутренней стороне внутренней мембраны митохондрий.

В результате расщепления двух молекул пировиноградной кислоты и переноса ионов водорода через мембрану по специальным каналам синтезируется в целом 36 молекул АТФ (2 молекулы в цикле Кребса и 34 молекулы в результате переноса ионов Н через мембрану).

Суммарное уравнение аэробного дыхания можно выразить следующим образом:

CHO + O+ 6HO + 38АДФ + 38НРО→

6CO+ 12HO + 38АТФ

Совершенно очевидно, что аэробное дыхание прекратится в отсутствии кислорода, поскольку именно кислород служит конечным акцептором водорода. Если клетки не получают достаточного количества кислорода, все переносчики водорода вскоре полностью насытятся и не смогут передавать его дальше. В результате основной источник энергии дл образования АТФ окажется блокированным.

аэробное дыхание окисление фотосинтез

2. Анаэробное дыхание

Анаэробное дыхание. Некоторые микроорганизмы способны использовать для окисления органических или неорганических веществ не молекулярный кислород, а другие окисленные соединения, например, соли азотной, серной и угольной кислот, превращающиеся при этом в более восстановленные соединения. Процессы идут в анаэробных условиях, и их называют анаэробным дыханием:

2HNO + 12Н→ N + 6HO + 2Н

HSO + 8Н→ HS + 4HO

У микроорганизмов, осуществляющих такое дыхание, конечным акцептором электронов будет не кислород а неорганическое соединения - нитриты, сульфаты и карбонаты. Таким образом, различия между аэробным и анаэробным дыханием заключается в природе конечного акцептора электронов.

2.1 Типы анаэробного дыхания

Основные типы анаэробного дыхания приведены в таблице 1. есть также данные об использовании бактериями в качестве акцепторов электронов Mn, хроматов, хинонов и др.

Таблица 1 Типы анаэробного дыхания у прокариот (по: М.В Гусев, Л.А. Минеева 1992, с изменениями)

Энергетический процесс

Конечный акцептор электронов

Продукты восстановления

Нитратное дыхание и нитрификация

Сульфатное и серное дыхание

“Железное ” дыхание

Карбонатное дыхание

СН, ацетат

Фумаратное дыхание

Сукцинат

Свойство организмов переносить электроны на нитраты, сульфаты и карбонаты обеспечивает в достаточной степени полное окисление органического или неорганического вещества без использования молекулярного кислорода и обуславливает возможность получения большого количества энергии, чем при брожении. При анаэробном дыхании выход энергии только на 10% ниже. Чем при аэробном. Организмы, для которых характерно анаэробное дыхание, имеют набор ферментов электронтранспортной цепи. Но цитохромоксилаза в них заменяется нитратредуктазой (при использовании в качестве акцептора электронов нитрата) или аденилсульфатредуктазой (при использовании сульфата) или другими ферментами.

Организмы, способные осуществлять анаэробное дыхание за счет нитратов, - факультативные анаэробы. Организмы, использующие сульфаты в анаэробном дыхании, относятся к анаэробам.

Вывод

Органические вещества из не органических зеленое растение образует только на свету. Эти вещества используются растением только для питания. Но растения не только питаются. Они дышат, как все живые существа. Дыхание происходит непрерывно днем о ночью. Дышат все органы растения. Растения дышат кислородом, а выделяют углекислый газ, как животные и человек.

Дыхание растений может происходить, как в темноте, так и на свету. Значит, на свету в растении протекают два противоположных процесса. Один процесс - фотосинтез, другой - дыхание. Во время фотосинтеза создаются органические вещества из неорганических и поглощается энергия солнечного света. Во время дыхания в растении расходуются органические вещества. А энергия, необходима для жизнедеятельности, освобождается. На свету в процессе фотосинтеза растения поглощают углекислый газ и выделяют кислород. Вместе с углекислым газом растения на свету поглощают из окружающего воздуха и кислород, необходимый растениям для дыхания, но в гораздо меньших количествах, чем выделяются при образовании сахара. Углекислого газа при фотосинтезе растения поглощают гораздо больше, чем выделяют его придыхании. Декоративные растения в комнате при хорошем освещении выделяют днем значительно больше кислорода, чем поглощают его в темноте ночью.

Дыхание во всех живых органов растения происходит непрерывно. Когда прекращается дыхание, растение, так же как и животное погибает.

Список литературы

1. Физиология и биохимия сельскохозяйственных растений Ф50/Н.Н. Третьяков, Е.И. Кошкин, Н.М. Макрушин и др.; под. ред. Н.Н. Третьякова. - М.; Колос, 2000 - 640 с.

2. Биология в экзаменационных вопросах и ответах Л44/ Лемеза Н.А., Камлюк Л.В.; 7-е изд. - М.: Айрис-пресс, 2003. - 512 с.

3. Ботаника: Учеб. Для 5-6 кл. сред. Шк.-19-е изд./Перераб. А.Н. Сладковым. - М.: Просвещение, 1987. - 256 с.

Дыхание - это окислительно-восстановительный процесс, идущий с образованием АТФ, при котором роль доноров водорода (электронов) играют органические или неорганические соединения, а акцепторами водорода (электронов) всегда служат неорганические соединения. Если конечным акцептором электронов является молекулярный кислород, то такой дыхательный процесс называется аэробным дыханием.

У некоторых микроорганизмов конечный акцептор электронов не молекулярный кислород, а неорганические соединения, такие как нитраты, сульфаты и карбонаты. При этом имеет место анаэробное дыхание.

Аэробное дыхание присуще многим микроорганизмам, они относятся к строгим аэробам. Однако среди этих организмов имеются факультативные анаэробы, которые могут расти и в присутствии и в отсутствии кислорода; они образуют АТФ путем брожения, а под действием молекулярного кислорода способ получения АТФ изменяется - вместо брожения начинает осуществляться дыхание.

К факультативным анаэробам относятся также микроорганизмы, у которых происходит анаэробное дыхание при использовании ими нитратов в качестве акцептора электронов. Микроорганизмы, осуществляющие анаэробное дыхание, при котором акцепторами электронов служат сульфаты и карбонаты, являются строгими анаэробами. Считают, что любые природные органические соединения микроорганизмы могут использовать в дыхательном процессе, однако степень окисления этих веществ должна быть меньше, чем степень окисления СО2.

Аэробное дыхание состоит из двух фаз. Первая фаза включает в себя серию реакций, благодаря которым органический субстрат окисляется до СO2, а освобождающиеся атомы водорода перемещаются к акцепторам. В этой фазе совершается цикл реакций, известный под названием цикла Кребса, или цикла трикарбоновых кислот (ЦТК). Вторая фаза представляет собой окисление освобождающихся атомов водорода кислородом с образованием АТФ. Обе фазы совместно ведут к окислению субстрата до СО2 и Н2О и образованию биологически полезной энергии (в виде АТФ и других соединений).

Кратко разберем цепь реакций при протекании цикла Кребса (рис. 22).

Первичный распад углевода здесь идет так же, как при брожении, но образовавшаяся пировиноградная кислота подвергается иным превращениям. При декарбоксилироваиии из нее образуется уксусный альдегид (или уксусная кислота), который соединяется с коферментом одного из окислительных ферментов - коферментом А (КоА-SH), образуя ацетилкофермент А. Под действием фермента цитратсинтетазы двууглеродный ацетил-КоА (СН 3СО-S-КоА) реагирует с молекулой щавелевоуксусной кислоты, содержащей четыре атома углерода, в результате чего полулается соединение с шестью атомами углерода - лимонная кислота:

Лимонная кислота под влиянием фермента аконитазы теряет молекулу воды и превращается в цис-аконитовую кислоту, которая под действием того же фермента присоединяет Н2О и превращается в изолимонную кислоту.

При воздействии изоцитратдегидрогеназы, активной группой которой является НАДФ, от изолимонной кислоты отщепляются два атома водорода, в результате чего она превращается в щавелевоянтарную кислоту, от которой, в свою очередь, под действием фермента декарбоксилазы отщепляется углекислый газ (СО2). В образовавшейся б - кетоглутаровой кислоте число атомов углерода становится равным пяти, б - кетоглутаровая кислота под влиянием ферментного комплекса б - кетоглутаратдегидрогеназы с активной группой НАД превращается в янтарную, теряя СО2 и два атома водорода. Затем следуют реакции окисления янтарной кислоты в фумаровую с помощью фермента сукцинатдегидрогеназы с активной группой ФАД, превращения фумаровой кислоты в яблочную при участии фумаратгидратазы (фумаразы) и окисления яблочной в щавелевоуксусную кислоту, катализируемого малатдегидрогеназой с активной группой НАД.

Эти превращения сопровождаются отщеплением двух пар атомов водорода. Щавелевоуксусная кислота взаимодействует с коферментом А, и цикл повторяется снова. Каждая из десяти реакций цикла трикарбоновых кислот (за исключением одной) легкообратима. Углеродные атомы ацетил-КоА освобождаются в виде двух молекул СО2. В реакциях ферментативного дегидрирования атомы водорода удаляются четырьмя разными дегидрогеназами. В трех из этих четырех реакций окисления атомы водорода присоединяются к НАД+ (или НАДФ+), и только в случае сукцинатдегидрогеназы они непосредственно переносятся на флавинадениидииуклеотид (ФАД). Кроме того, образуется одна молекула АТФ. В ходе описанных реакций в трансформируемые соединения может включаться вода. Ферменты ЦТК располагаются на внутренней стороне цитоплазматической мембраны или на мембранах мезосом микроорганизмов.

Суммарную реакцию цикла трикарбоновых кислот можно представить в виде следующего уравнения:

Отметим, что в цикле трикарбоновых кислот образуется также ряд промежуточных продуктов, играющих роль предшественников для реакции биосинтеза макромолекул микробной клетки. Поэтому большинство ферментов цикла Кребса имеется и у облигатных анаэробов (последние не имеют только фермента, катализирующего трансформацию б - кетоглутаровой кислоты в янтарную). В цикл Кребса вовлекаются и продукты катаболизма жирных кислот и некоторых аминокислот.

Следовательно, цикл трикарбоновых кислот имеет большое значение не только для дыхания, но и для биосинтеза. Это один из центральных механизмов, с помощью которого все источники углерода используются для синтеза необходимых для жизни микроорганизмов соединений. Собственно, в этом и заключается смысл цикла Кребса, дающего вещества, легко превращающиеся в аминокислоты, белки, жиры, углеводы и т. д., которые затем становятся частью структуры клетки.

У некоторых микроорганизмов, усваивающих простые источники углерода, например уксусную кислоту, имеется модифицированная форма ЦТК, известная под названием глиоксилатного цикла (открыт Корнбергом и Кребсом в 1957 г.).

При всех реакциях дегидрирования в цикле Кребса атомы водорода, отщепляемые специфическими дегидрогеназами, акцептируются коферментами НАД и НАДФ и затем переносятся по цепи переносчиков. Однако фактически происходит перенос не атомов водорода, а только электронов. Ядра атомов водорода, по-видимому, свободно перемещаются по растворителю в виде протонов. По этой причине цепь переносчиков часто называют цепью переноса электронов, или дыхательной цепью. Цепь переноса электронов содержит переносчики - молекулы трех различных групп, представляющие собой окислительно - восстановительные ферменты, такие как флавопротеиды, хиноны и цитохромы.

Флавопротеиды содержат в качестве простетических групп флавинадениндинуклеотид (ФАД) или флавинмононуклеотид (ФМН); они передают электроны от восстановленных пиридиновых нуклеотидов к последующим переносчикам дыхательной цепи. Хиноны (наиболее распространен убихинон или кофермент Q) представляют собой небелковые переносчики с небольшой молекулярной массой. Они являются промежуточными компонентами между флавопротеидами и цитохромами. Цитохромы содержат железопорфириновые простетические группы и напоминают гемоглобин и миоглобин. При переносе электронов цитохромами происходит обратимое окисление атома железа:

Электроны, отнятые от органического субстрата, переносятся последовательно через промежуточные переносчики - флавопротеид, убихинон (кофермент Q) и цитохромы, пока последний переносчик в восстановленном состоянии не прореагирует с молекулярным кислородом. Последняя реакция катализируется ферментом цитохромоксидазой. В итоге такого необратимого конечного окисления вся цепь переносчиков электронов переходит в окисленное состояние, а молекулярный кислород восстанавливается до Н2О.

При переносе электронов на отдельных участках дыхательной цепи выделяется значительное количество свободной энергии. Для того чтобы использовать освобождающуюся свободную энергию, в микробной клетке имеется механизм, объединяющий в единый процесс выделение энергии и образование богатых энергией фосфатных связей (АТФ). Этот процесс называется окислительным фосфорилированием.

Цепь переноса электронов при дыхании схематически изображена на рисунке 23.

Все аэробные и факультативно-анаэробные бактерии имеют дыхательную цепь, причем ферменты, катализирующие процессы переноса электронов в этой цепи и окислительного фосфорилирования, локализованы в цитоплазматической мембране и мезосомах.

Большинство анаэробных микроорганизмов не имеют цепи переноса электронов. Поэтому при наличии кислорода воздуха в среде происходит непосредственный транспорт водорода флавиновыми дегидрогеназами (ФАД) на кислород, что приводит к образованию перекиси водорода H2 O2 Перекись водорода чрезвычайно токсична и должна быть удалена, что могут осуществить два фермента - каталаза и супероксиддисмутаза, однако они у анаэробных бактерий отсутствуют. В связи с этим одна из причин токсического действия кислорода на анаэробные микроорганизмы заключается в образовании и аккумуляции перекиси водорода в их клетках в летальных дозах.

В результате окислительного фосфорилирования большая часть энергии пировиноградной кислоты становится доступной для микроорганизмов. Суммарно полное окисление глюкозы можно выразить следующим уравнением:

Рассмотрим выход энергии при дыхании. Определено, что полное окисление одного моля (180 г) глюкозы дает 38 молекул АТФ. Каждая связь АТФ равпа приблизительно 3,4 104 Дж, а 38 молекул АТФ дают 12,9-105 Дж. При сжигании одного моля глюкозы в калориметре выделяется в виде тепла около 28,8 * 105 Дж. Превращение глюкозы в клетках микроорганизмов в форму, пригодную для использования (АТФ), сопровождается выделением 12,9-105 Дж, или 44,1% всей энергии. Следовательно, более 50% энергии, заключенной в глюкозе, рассеивается в виде тепла.

Таким образом, дыхание - это процесс, при котором электроны переносятся от органических веществ на молекулярный кислород, то есть при дыхании роль акцептора электронов играет кислород.

В отличие от дыхания брожение - процесс, при котором отщепляемые от органического вещества электроны передаются на органические же соединения, то есть при брожении роль акцептора электронов играет обычно какое - нибудь органическое соединение, образующееся в ходе этого процесса. При брожении высвобождается лишь очень незначительная часть той химической энергии, которая потенциально может быть извлечена из молекулы глюкозы при полном окислении ее до СО2 и Н2О. В этом легко убедиться, сравнив количество выделившейся свободной энергии при анаэробном расщеплении глюкозы до молочной кислоты и при окислении ее до СО2 и Н2О:

При сбраживании глюкозы продукты брожения, которые в анаэробных условиях уже не могут быть использованы микробной клеткой и потому выводятся из нее, все еще содержат значительную часть той энергии, которая была заключена в молекуле глюкозы. Поэтому для получения того же количества энергии микроорганизмам, находящимся в анаэробных условиях, приходится расходовать гораздо больше глюкозы, чем микроорганизмам, живущим в условиях аэробиоза.

Как было указано выше, хемолитоавтотрофные бактерии получают свою энергию в результате окисления неорганических соединений - Н2, NH4+ , N02--, Fe2+, H2S, S°, SO32-, S203- 7 , CO.

У этих бактерий метаболизм родствен метаболизму хемоорганогетеротрофных организмов, но они обладают дополнительной способностью получать энергию за счет окисления того или иного неорганического соединения. В большинстве случаев эти бактерии имеют цепь переноса электронов, которая во многих отношениях сходна с соответствующей системой других аэробных микроорганизмов. Перенос электронов по этой цепи приводит к образованию АТФ.

Неполное окисление органических соединений . Дыхание обычно связано с полным окислением органического субстрата. Другими словами, конечными продуктами распада, например, углеводов являются только СО2 и Н20.

Некоторые бактерии, в частности представители рода Pseudomonas и ряд грибов, не полностью окисляют углеводы. При этом неполно окисленные органические соединения, такие как глюконовая, фумаровая, лимонная, молочная, уксусная кислоты и другие аккумулируются в среде. Дыхание этих организмов иногда неправильно называют «аэробным», или «окислительным», брожением, в то время как неполное окисление имеет гораздо меньше общего с брожением, чем с обычным дыханием. Неполное окисление, например, протекает лишь в присутствии кислорода, а брожение кислорода не требует. С энергетической точки зрения неполное окисление - выгодный для микроорганизмов процесс.

Анаэробное дыхание . Некоторые микроорганизмы способны использовать для окисления органических или неорганических веществ не молекулярный, а связанный кислород окисленных соединений, например солей азотной, серной кислот, углекислоты которые превращаются при этом в более восстановленные соединения. Данные процессы идут в анаэробных условиях, и их называют анаэробным дыханием:

Следовательно, эти микроорганизмы в качестве конечного акцептора электронов используют не кислород, а неорганические соединения, такие как нитраты, сульфаты и карбонаты. Различия между аэробным и анаэробным дыханием заключаются в природе конечного акцептора электронов.

Свойство микроорганизмов переносить электроны на нитраты, сульфаты и карбонаты обеспечивает в достаточной степени полное окисление органического или неорганического вещества без использования молекулярного кислорода и обусловливает возможность получения ими большего количества энергии, чем при процессе брожения. При анаэробном дыхании выход энергии только на 10% ниже, чем при аэробном. Микроорганизмы, для которых характерно анаэробное дыхание, имеют набор ферментов цепи переноса электронов, но цитохромоксидаза заменяется нитратредуктазой (в случае использования нитратов) или аденилилсульфатредуктазой (в случае использования сульфатов).

Микроорганизмы, способные осуществлять анаэробное дыхание за счет нитратов, - факультативные анаэробы, они относятся главным образом к родам Pseudomonas и Bacillus. Микроорганизмы, использующие сульфаты в анаэробном дыхании, относятся к анаэробным и принадлежат к родам Desulfovibrio, Desulfomonas и Desulfotomaculum.

Дыхание может происходить как в аэробных, то есть в присутствии кислорода, так и в анаэробных - бескислородных условиях.[ ...]

Аэробное дыхание - реакции распада глюкозы в присутствии кислорода.[ ...]

Большинство гетеротрофных организмов получает энергию в результате биологического окисления органических веществ - дыхания. Водород от окисляемого вещества (см. § 24) передается в дыхательную цепь. Если роль конечного акцептора водорода выполняет только кислород, процесс носит название аэробного дыхания, а микроорганизмы являются строгими (облигатными) аэробами, которые обладают полной цепью ферментов переноса (см. рис. 14) и способны жить только при достаточном количестве кислорода. К аэробным микроорганизмам относятся многие виды бактерий, гри-6¿i, водоросли, большинство простейших. Аэробные сап-рофиты играют основную роль в процессах биохимической очистки сточных вод и самоочищении водоема.[ ...]

Аэробное дыхание (тип 1) - процесс, обратный «нормальному» фотосинтезу: в этом процессе синтезированное органическое вещество (СН2О) вновь разлагается с образованием СО2 и Н9О и с высвобождением энергии. Все высшие растения и животные и большинство представителей Мопега и Protista (рис. 2.4) получают энергию для поддержания жизнедеятельности и построения клеток именно с помощью этого процесса. В итоге завершенного дыхания образуются СО2, И2О и вещества клетки, однако процесс может идти не до конца, и в результате такого незавершенного дыхания образуются органические соединения, еще содержащие некоторое количество энергии, которая в дальнейшем может быть использована другими организмами (процессы типа 2 п 3).[ ...]

Аэробные организмы нуждаются для дыхания в молекулярном кислороде, который они извлекают из воздуха. В этом процессе принимают участие разнообразные ферменты - гидроксилазы и оксигеназы.[ ...]

Аэробная микрофлора, перерабатывающая бытовые отходы, требует постоянного притока кислорода и отвода газообразных продуктов дыхания. Высокие концентрации СОг могут оказать токсическое воздействие на микрофлору, что приведет к снижению интенсивности биологических процессов. В связи с этим большое значение имеет регулирование воздушного режима в ферментаторах.[ ...]

Аэробное дыхание сделало возможным развитие сложных многоклеточных организмов. Считается, что первые ядерные клетки появились после того, как содержание кислорода в атмосфере достигло 3-4% его современного уровня (или около 0,6% состава той атмосферы). Случилось это примерно 1 млрд лет назад (см. рис. 7.26). Многоклеточные организмы, вероятно, появились 700 млн лет назад по достижении концентрации кислорода в атмосфере 8% от современного уровня.[ ...]

Следовательно, «топливом» для окисления в митохондриях являются пируват и жирные кислоты. Ацетил-КоА обладает высоким потенциалом переноса ацетильных групп. Следовательно, топливные молекулы вступают в цикл Кребса в виде ацетил-КоА. Непрерывность же снабжения окислительных процессов «топливом» обеспечивается запасанием животными клетками липидов, являющихся главным ресурсом жирных кислот, а также гликогена, являющегося источником глюкозы.[ ...]

При аэробном дыхании выделяется значительно больше энергии, чем при анаэробном. Так, если при полном окислении молекулы глюкозы образуется 38 молекул АТФ, то при брожении ее- всего 2. Поэтому анаэробам приходится перерабатывать значительно большее количество органического вещества, чем аэробам, для получения одинакового количества энергии.[ ...]

Итак, дыхание - процесс гетеротрофный, приблизительно уравновешивающий автотрофное накопление органического вещества. Различают аэробное, анаэробное дыхание и брожение.[ ...]

По способу дыхания микробы делятся на аэробные и анаэробные. Аэробные микробы, наприме[ ...]

Анаэробное дыхание служит основой жизнедеятельности главным образом бактерий, дрожжей, плесневых грибов и др., хотя как звено метаболизма оно может встречаться и в некоторых тканях высших животных. Наиболее характерные примеры анаэробного дыхания:, .образование метана метановыми бактериями за о-чет разложения органического соединения или восстановления угля или карбонатов, образование сероводорода сульфатвосстанавливающими бактериями (в частности,в Черном море), винное брожение. Анаэробное дыхание выделяет меньше энергии,чем аэробное. Полегают, что первичный мир живого имел анаэробные формы, на оонове которых позднее образовался аэробный мир.[ ...]

Если в процессе дыхания окисляются органические вещества с относительно более высоким содержанием кислорода, чем в углеводах, например органические кислоты - щавелевая, винная и их соли, то дыхательный коэффициент будет значительно больше 1. Он также будет больше 1 в том случае, когда часть кислорода, используемого для дыхания микробов, берется из углеводов; или же при дыхании тех дрожжей, у которых одновременно с аэробным дыханием происходит спиртовое брожение. Если же наряду с аэробным дыханием протекают другие процессы, при которых используется добавочный кислород, то дыхательный коэффициент будет меньше 1. Он будет меньше 1 и тогда, когда в процессе дыхания окисляются вещества с относительно небольшим содержанием кислорода, например белки, углеводороды и др. Следовательно, зная значение дыхательного коэффициента, можно определить, какие вещества окисляются в процессе дыхания.[ ...]

Таким образом, яри аэробном типе дыхания по сравнению с анаэробным выход энергии - в 25 раз больший. Между тем потребность в энергии у бактериальной клетки одинакова, независимо от того, является ли она аэробной или анаэробной. Следовательно, анаэробным бактериям приходится переработать в 25 раз больше вещества, чтобы получить необходимую для их жизни энергию.[ ...]

Посредством процесса аэробного дыхания организмы получают энергию для поддержания жизнедеятельности и построения клеток. Бескислородное дыхание - это основа жизнедеятельности сапрофагов (бактерии, дрожжи, плесневые грибы, простейшие). Аэробное дыхание превосходит, и значительно, анаэробное в скорости.[ ...]

Как было указано выше, дыхание и питание являются основными процессами обмена веществ живого организма. Для жизнедеятельности микроорганизмов, т. е. для их развития, размножения и роста, а также для синтеза различных органических соединений, входящих в состав клетки, необходимо много энергии. Микроорганизмы удовлетворяют свою потребность в энергии благодаря процессам дыхания. Дыхание, или аэробное дыхание - это процесс окисления сложных органических соединений до менее сложных или до простых минеральных веществ - Н20 и С02 (процесс диссимиляции) с одновременным выделением свободной энергии. Выделение углекислоты в результате дыхания связано с поглощением кислорода и полным окислением питательных веществ.[ ...]

Итак, простейший процесс аэробного дыхания представляется в следующем виде. Молекулярный кислород, потребляемый в процессе дыхания, используется в основном для связывания водорода, образующегося при окислении субстрата. Водород от субстрата передается к кислороду через ряд промежуточных реакций, проходящих последовательно с участием ферментов и переносчиков. Определенное представление о характере процесса дыхания дает так называемый дыхательный коэффициент. Под этим понимают отношение объема выделившегося углекислого газа к объему кислорода, поглощенного в процессе дыхания (С02:02).[ ...]

По характеру диссимиляции различают аэробные и анаэробные организмы. Аэробные (от греч. аег - воздух) организмы для дыхания (окисления) используют свободный кислород. Аэробами является большинство ныне живущих организмов. Напротив, анаэробы окисляют субстраты, например, сахара в отсутствие кислорода, следовательно, для них дыханием является брожение. Анаэробами являются многие микроорганизмы, гельминты. Например, динитрифицирующие анаэробные бактерии окисляют органические соединения, используя нитриты, являющиеся неорганическим окислителем.[ ...]

Влажность определяет процессы питания и дыхания аэробных микроорганизмов и оказывает огромное влияние на развитие грибов. Влажность воздуха и свободная влага на поверхности деревянных изделий оказывают влияние в основном на прорастание спор, а влажность древесины - на рост и последующее развитие гиф. Питание грибов осуществляется за счет осмоса через всю их поверхность. Поэтому необходимые для питания органические соединения древесины должны находиться в водных растворах, обеспечивающих диффузию их через растительную оболочку клеток мицелия. Диффузия внутрь живой клетки гриба высокомолекулярных соединений типа целлюлозы исключена. Дереьоокра-шнвающие и плесневые грибы не разлагают целлюлозу, а живут за счет крахмала, глюкозы, жиров и других питательных веществ, содержащихся в древесине в малых количествах [ 1 ].[ ...]

Микроорганизмы, имеющие факультативно-анаэробное дыхание, в своих клетках содержат, кроме дегидраз, еще оксидазы и ферменты, активирующие кислород, т. е. ферменты, свойственные и аэробным микробам. Дрожжи относятся к группе факультативно-анаэробных микроорганизмов, т. е. им свойственно и анаэробное и аэробное дыхание, но последнее выражено слабее. При анаэробном дыхании дрожжи расходуют на дыхание значительно больше энергетического материала (сахара), чем при аэробном дыхании.[ ...]

Как уже указывалось, многие группы бактерий способны й к аэробному, и к анаэробному дыханию (т. е. являются факультативными анаэробами), но важно отметить, что конечные продукты этих двух реакций различны и количество высвобождающейся энергии в анаэробных условиях значительно меньше. В присутствии кислорода почти вся глюкоза превращалась в бактериальную протоплазму и СО2, в отсутствие же кислорода разложение было неполным, гораздо меиьшая часть глюкозы превращалась в вещество клетки, и в среду выделялся ряд органических соединений, для окисления которых требуются дополнительные «специалисты»-бактерии. В общем полное аэробное дыхание во много раз быстрее, чем неполный процесс анаэробного дыхания, если оценивать выход энергии на единицу используемого субстрата.[ ...]

В условиях промышленного загрязнения атмосферы обнаружено усиление аэробного дыхания и возрастание активности терминальных оксидаз. Для растений, произрастающих на промплощадке, характерна максимальная активность пероксидазы и полифенолоксидазы. Уровень активности и чувствительности ферментов зависит от биологических особенностей и степени повреждаемости вида. Максимальная активность и чувствительность пероксидазы и полифенолоксидазы к действию газов отмечалась у березы бородавчатой, средняя -у тополя бальзамического и самая низкая - у клена ясенелистного.[ ...]

Содержание углекислого газа. СОз является конечным продуктом как брожения, так и аэробного дыхания. При довольно высоких концентрациях СО2, значительно превышающих те, которые обычно окружают растительный организм (выше 40%), процесс дыхания тормозится. Торможение вызывается несколькими причинами: 1. Высокая концентрация СОг может оказывать общее анестезирующее влияние на растительный организм. 2. СОг тормозит активность ряда дыхательных ферментов. 3. Повышение содержания СОг вызывает закрытие устьиц (с. 69), что затрудняет доступ кислорода н косвенно тормозит процесс дыхания.[ ...]

В настоящее время общепризнано, что первые этапы (гликолиз) протекают одинаково при процессах как дыхания, так и брожения. Поворотным моментом является образование иировипоградной кислоты. В аэробных условиях нировиноградная кислота распадается до ССЬ и воды (дыхание), тогда как в анаэробных она преобразуется в различные органические соединения (брожение). Организм обладает способностью при изменении условий переключать процессы, прекращая брожение и усиливая дыхание и наоборот. Впервые в опытах Пастера было показано, что в присутствии кислорода процесс брожения у дрожжей тормозится и заменяется процессом дыхания. Одновременно резко сокращается распад глюкозы. Это явление оказалось характерным для всех факультативных анаэробных организмов, включая и высшие растения, в получило название эффекта Пастера. Сокращение расхода глюкозы в присутствии кислорода целесообразно, поскольку при дыхательном распаде выход энергии значительно выше, а следовательно, глюкоза используется более экономно. Однако осуществление разбираемого эффекта требует специальных механизмов, которые будут рассмотрены далее.[ ...]

Огромное значение имеет также то обстоятельство, что водоросли в процессе фотосинтеза выделяют свободный кислород, необходимый для дыхания водных организмов, как животных, так и растительных. В настоящее время считают, что весь свободный кислород Земли является продуктом деятельности зеленых хлорофиллоносных растений. А в воде, содержащей кислород, быстрее завершаются процессы минерализации органических веществ. Было установлено, например, что в Черном, Каспийском и Азовском морях в летнее время, при наличии аэробных условий, полный бактериальный распад планктонных организмов (растительных и животных) заканчивается примерно в 20 дней, тогда как в северных морях это происходит в 3-4 раза медленнее. Так осуществляется круговорот веществ в воде, и без участия водорослей он был бы немыслим.[ ...]

В данной главе рассказано о спорообразующих анаэробных бактериях, и только об облигатных, т. е. таких организмах, которые не способны развиваться в аэробных условиях, в отличие от факультативных, способных жить как за счет дыхания, используя молекулярный кислород, так и за счет «нитратного дыхания» либо брожения различных органических веществ в анаэробных условиях. Необходимо отметить, что анаэробные спороносные бактерии хуже изучены, чем аэробные, из-за значительных трудностей, с которыми встречаются исследователи при выделении и культивировании анаэробов.[ ...]

Одним из самых главных параметров озерной воды является содержание в ней кислорода, так как кислород играет весьма существенную роль в метаболизме водных аэробных организмов. Привнос растворимого в воде кислорода из атмосферы и образование его путем фотосинтеза сбалансированы с его расходом на дыхание аэробных организмов. Результирующее распределение и динамика кислорода имеют первостепенное значение для наличия нутриентов и, следовательно, для органической продуктивности озер. Биологические и химические процессы при этом тесно взаимосвязаны.[ ...]

Некоторые анаэробные микроорганизмы в качестве акцептора используют связанный кислород, входящий в состав таких соединений, как сульфаты или нитраты. В присутствии кислорода они имеют аэробное дыхание, а в бескислородных средах используют в качестве акцептора кислород нитратов, восстанавливая их до азота или его низших оксидов. Бактерии, восстанавливающие в процессе дыхания сульфаты до сероводорода, являются облигатными анаэробами, например ВевиНоуШ-гю (кэиИипсапз.[ ...]

Куиревич установил критическую концентрацию равной 10%, однако Том кине считает, что она должна быть ниже 5% (¡рис. 63). Из этого необходимо сделать вывод, что диапазон, в котором аэробное дыхание и брожение протекают одновременно, определяется сортовыми и породными особенностями плодов и сильно колеблется в зависимости от условий вегетации и агротехники. Возможно, этим объясняется причина различного поведения видов и сортов плодов в отдельные годы их хранения в камерах с регулируемой газовой средой.[ ...]

Итак, несмотря на то что анаэробные сапрофаги, как облигатные, так и факультативные, составляют меньшую часть компонентов сообщества, они тем не менее играют в экосистеме важную роль, так как лишь они способны к дыханию в лишенных света бескислородных нижних ярусах системы. Занимая эти негостеприимные местообитания, они «спасают» энергию и материалы, делая их доступными для большинства аэробов. Таким образом, то, что кажется «неэффективным» способом дыхания, оказывается составной частью «эффективной» эксплуатации энергии и материальных ресурсов экосистемой в целом. Например, эффективность очистки сточных вод, которая обеспечивается управляемой человеком гетеротрофной экосистемой, зависит от согласованности между деятельностью анаэробных и аэробных сапрофагов.[ ...]

Поскольку рост связан с различными эидергоиическими, т. е. требующими затрат энергии, процессами, например синтезом белка, не удивительно, что для быстро удлиняющихся тканей корня характерна высокая интенсивность дыхания по сравнению с интенсивностью дыхания равного объема ие-делящейся ткани, хотя при пересчете на 1 клетку интенсивность дыханид зрелых клеток может быть значительно выше, чем меристем этических, поскольку последние меньше по размерам и содержат меньше цитоплазмы. Кроме того, рост требует аэробных условий и адекватного снабжения углеводами, служащими источником энергии и строительным материалом.[ ...]

Углеводы являются основным продуктом фотосинтеза, на их основе в процессе обмена веществ в растительном организме формируются белки, жиры, нуклеиновые кислоты и другие соединения. Углеводы - основной источник для аэробного и анаэробного дыхания клеток; источник энергии для возобновления вегетации. Обычно растение содержит большой набор разнообразных углеводов. В процессе вегетации соотношение растворимых и нерастворимых форм изменяется. В молодых растениях преобладают моно- и дисахариды, в период созревания увеличивается содержание крахмала, целлюлозы, т.е. нерастворимых форм.[ ...]

Рост грибов и выделение ими углекислоты зависят от давления кислорода в атмосфере и от температуры. При меньшем давлении кислорода чем 1,5 атм и температуре 17,5° С гриб перестает расти и его обмен приобретает анаэробный характер. Нижняя граница аэробного дыхания зависит от температуры: при 29,5° С обмен веществ уже меняется при давлении кислорода 1,5 атм. В условиях анаэробного дыхания выделение углекислоты прямо пропорционально давлению кислорода. В таких условиях изменяется весь обмен веществ гриба, весь набор его ферментов.[ ...]

Именно эта часть светового потока составляет энергетическую основу фотосинтеза - процесса, в котором, с одной стороны, создается органическое вещество из неорганических составляющих, а с другой - открывается возможность использования выделяемого кислорода для дыхания как самих растений, так и гетеротрофных аэробных организмов. В этом реализуется само наличие на Земле биологического круговорота веществ.[ ...]

В третьей фазе состояния активного ила при полном прекращении подачи питания происходит постепенное отмирание микроорганизмов и минерализация активного ила, что используется для обработки избыточного активного ила. Такая обработка избыточного ила названа методом аэробной стабилизации, так как в результате ил теряет способность к загниванию, т. е. приобретает стабильные свойства. Обработка ила осуществляется при подаче воздуха, необходимого для дыхания микроорганизмов и минерализации органических веществ.[ ...]

Янтарная кислота, образовавшаяся в цикле Кребса, дает основу для.образования порфиринового ядра хлорофилла. Поскольку имеется ряд реакций и процессов, благодаря которым отдельные компоненты извлекаются из цикла Кребса, должны быть и обратные процессы, поставляющие их в цикл. Если бы этого не было, скорость превращения в аэробной фазе дыхания заметно бы снизилась. Такими реакциями является окислительное дезаминирование аминокислот, приводящее к образованию органических кислот.[ ...]

Основные экосферные резервуары углерода находятся в гидросфере, биосфере и атмосфере. Между ними происходит активный обмен с интенсивностью в десятки миллиардов тонн углерода в год. В этом обмене океан является главным поглотителем углерода, поступающего как с суши со стоком рек в результате деструкции органического вещества, так и из атмосферы, откуда углерод поступает вследствие дыхания всего комплекса живых существ (биоты). Важнейшие процессы в биосфере - формирование органического вещества из неорганического при участии солнечной энергии (фотосин-тез), расходование органического вещества в процессах аэробной и анаэробной жизнедеятельности биоты и деструкция органического вещества.[ ...]

Способность насекомого возвращаться в нормальное состояние без терапевтической помощи после обработки такими дозами инсектицида, которые" должны вызвать летальный исход, можно объяснить предъявляемой оценкой зависимости между тканями и метаболическими процессами у насекомых по сравнению с аналогичной зависимостью у человека; хотя насекомые могут иметь меньше свободы, чем люди, по отношению к окружающему миру, их внутренние реакции (процессы) могут быть менее чувствительны к действию ядов и инсектицидов. Это основывается на прямом трахеальном дыхании насекомых, при котором кровь не является необходимым носителем кислорода. Насекомые обладают способностью противостоять флуктуации ионов и метаболитов в крови; их индивидуальные ткани способны мета-болизировать по аэробному и анэробному механизму, что дает возможность адекватного обращения (реактивации) метаболитов в противоположных условиях. В этом отношении позвоночные значительно более чувствительны: активность мозга тесно связана с количеством сахара, ионов и кислорода в крови любые помехи, н а пример из ме нен ие дыханйяИпри отравлении фосфорорганическими соединениями, дают далеко идущие последствия, которые могут кульминационно привести к смерти.[ ...]

Биологические функции митохондрий удалось установить только после того, как их научились отделять от других клеточных компонентов путем дифференцированного ультрацентрифугирования. Выделенные таким образом эти органеллы могут быть очищены от солей посредством диализа, высушены и подвергнуты химическому анализу. Отсюда становится понятным обязательное присутствие митохондрий во всех клетках с аэробным дыханием, а также и то, что при изъятии ядра из клетки отдельные компоненты ее продолжают «дышать». В то же время замечено, что при переходе клетки от аэробного образа жизни к анаэробному, т. е. когда перестает функционировать окислительный цикл трикарбоновых кислот, митохондрии исчезают и взамен их возникает мощно развитая система мембран эндоплазматическей сети. Подобные наблюдения были сделаны при изучении дрожжевых клеток и чашелистиков канатника (Abutilón), помещенных в атмосферу азота. От числа митохондрий в клетках зависит интенсивность дыхания.[ ...]

О том же свидетельствует более длительное сохранение зеленой окраски у плодов, поскольку в условиях РГС подавляется распад хлорофилла. Снижение активности окислительных ферментов - полифенолоксидазы и аскор-бинатоксидазы, обусловленное уменьшением концентрации 02 в газовой среде, способствует лучшему сохранению Р- и С-витаминной активности плодов, препятствуя одновременно побурению последних. При концентрациях 02 и С02, рекомендуемых для вида и сорта плодов и овощей, в РГС наблюдается меньшее - накопление в их тканях ацетальдегида и спирта (продуктов анаэробного распада сахаров), что коррелирует с меньшим поражением плодов загаром. Существующая теория объясняет это явление так. В растительных тканях как при обычном содержании, так и при недостатке кислорода имеют место аэробный и анаэробный типы дыхания. В условиях, когда подавляется процесс аэробного дыхания (при понижении концентрации 02 в атмосфере), тормозится и дыхание анаэробное. Что же касается ацетальдегида, то его образование зависит и от реакции декарбоксилирования, а она, как уже отмечалось, в условиях РГС подавляется.[ ...]

Как известно, бобры не используют значительное количество сгрызенной и складируемой ими древесно-кустарниковой растительности, которая, перегнивая, обогащает воду органическими и минеральными веществами. Исследования Наймана с соавторами (Ыайпап е! а1., 1986) показали, что бобр непосредственно грызущей деятельностью способствует поступлению в воду 56 % затопленной древесины ивы (диаметр 1-10 см), 52% осины, 17% березы, 13% ольхи и менее 1% хвойных. Кроме того, из-за изменения гидрологических условий до 50-60% древесины выламывается ветром и попадает в воду. Эрозионный выход органического материала (углерода) максимален в воде, вытекающей из бобровых прудов. Пруд содержит значительно больше углерода на единицу площади, чем русловые участки. Он получал только 42% аллохтонной органики, поступающей в русловой участок на единицу площади. Но поскольку пруд имел площадь в семь раз больше, чем русловой участок, то на единицу длины потока он получал аллохтонной органики втрое больше. Первичная продукция пруда на единицу площади значительно меньше таковой для русла. Общее аэробное дыхание пруда вдвое больше на единицу площади, а на единицу длины потока в 15.8 раз больше русла. Время оборота молекулы углерода для пруда составило 161 год, для руслового участка - 24 года. Индекс речного метаболизма показал, что пруд накапливает и (или) обрабатывает органических поступлений больше, чем транспортирует вниз по течению. Соответственно длина оборота углерода (расстояние перемещения атома углерода в речном потоке в сохраненной или редуцированной форме) для пруда составила 1.2 км, а для руслового участка 8.0 км. Следовательно, бобровый пруд действовал более эффективно.