Алгебраические поверхности первого порядка. Алгебраические поверхности первого порядка Уравнения поверхностей первого порядка

Поверхность

Поверхность, определенная некоторым уравнением в данной системе координат есть геометрическое место точек, координаты которых удовлетворяют данному уравнению F(x; y; z) = 0.

Линия в пространстве

Если уравнения F(x; y; z) = 0 и Ф (x; y; z) = 0 определяют некоторую поверхность, то линия L (x; y; z) = 0 может быть определена как геометрическое место точек общих для обеих поверхностей (линия пересечения поверхностей)

Плоскость, как поверхность первого порядка

Существует, как минимум, три определения плоскости:

1) Плоскость есть поверхность, которая полностью каждую прямую, соединяющую любые две ее точки.

2) Плоскость есть множество точек пространства, равноудаленных от данных двух точек.

А теперь об одной из форм уравнения плоскости.

Во-первых, со школьных времен известно; «любые не совпадающие и не лежащие на одной прямой три точки определяют плоскость, причем единственную». Не случайно абсолютно устойчив (т.е. «не качается») стул на трех ножках и не устойчив («качается») стул на двух и более чем на трех ножках. Во-вторых, вектор нормали к плоскости ориентирует ее в пространстве (см. Рис.31)


Пусть искомая плоскость р проходит через точку М 0 перпендикулярно вектору, тогда

Во-первых, вектор есть результат векторного произведения вектора М 0 М 2 на вектор М 0 М 1

Во-вторых, вектор перпендикулярен и вектору М 0 М 2 , и вектору М 1 М 2 . Откуда, из условия ортогональности векторов получаем, что скалярное произведение на вектор М 0 М 2 (или на вектор М 0 М 1) равно нулю. Если точка М 2 имеет координаты (x; y; z), то скалярное произведение вектора на вектор М 0 М 2 должно быть равно нулю. С учетом того, что вектор М 0 М 2 определяется как

получаем, что

Уравнение плоскости, проходящей через данную точку и перпендикулярной данному вектору

Пример 30 (получение уравнения плоскости)

Найти уравнение плоскости, проходящей через точку М 0 (1; 1; 1) перпендикулярно вектору

Решение

В нашем случае

А=1, В= 1 и С =1;

x 0 = 2, y 0 = 2, z 0 = 3,

следовательно, уравнение плоскости имеет вид

Или, окончательно,

Ответ

Искомая плоскость определяется уравнением

Общее уравнение плоскости

Вообще, любое уравнение вида

A x + B y + C z + D = 0

определяет плоскость (где А, В и С - координаты вектора-нормали к плоскости). Такая форма уравнения плоскости получила название «общее уравнение плоскости».

Неполные уравнения плоскости

Пусть плоскость задана своим общим уравнением

A x + B y + C z + D = 0, (*)

1) если D = 0, то (*) определяет плоскость, проходящую через начало координат;

2) если А = 0, то B y + C z + D = 0 и имеем плоскость, параллельную оси Ox (т.к.);

3) если В = 0, то A x + C z + D = 0 и имеем плоскость, параллельную оси Oy (т.к.);

4) если C = 0, то A x + B y + D = 0 и имеем плоскость, параллельную оси Oz (т.к.);

5) А = 0; В = 0, то C z + D = 0 и имеем плоскость, параллельную плоскости Oxy;

6) A = 0; C = 0, то В y + D = 0 и имеем плоскость, параллельную плоскости Oxz;

7) B = 0; C = 0, то A x + D = 0 и имеем плоскость, параллельную плоскости Oyz;

8) A = 0, B = 0, D = 0, то С z = 0 - это плоскость Oxy;

9) A = 0, C = 0, D = 0, то B y = 0 - это плоскость Oxz;

10) B = 0, C = 0, D = 0, то A z = 0 - это плоскость Oyz.

Точно так же, как было ранее с общим уравнением прямой на плоскости , из общего уравнения можно получить и другие формы уравнения плоскости. Одна из этих форм уравнение плоскости в отрезках.

Из общего уравнения плоскости

A x + B y + C z + D = 0

Получается уравнение плоскости в отрезках


Последнее выражение получило название «уравнение плоскости в отрезках»

Уравнение плоскости в отрезках

где a, b и с - величины отрезков, отсекаемых плоскостью на осях Ox, Oy и Oz соответственно.

Пусть две плоскости заданы своими общими уравнениями

A 1 x + B 1 y + C 1 z + D 1 = 0 и

A 2 x + B 2 y + C 2 z + D 2 = 0.

Т.е., векторы-нормали имеют координаты

Для плоскости

Для плоскости

И пусть плоскости не совпадают и не параллельны (см. Рис.32)

Угол между двумя плоскостями

Угол между плоскостями определяется углом между нормальными векторами, а как найти угол между векторами мы уже знаем:

если ц - угол между векторами, то это же и угол между плоскостями р 1 и р 2

Откуда два важных следствия (условия)

Условие перпендикулярности двух плоскостей

Две плоскости перпендикулярны при условии, что

A 1 A 2 + B 1 B 2 + C 1 C 2 = 0.

Лекция 2. Плоскость как поверхность первого порядка. Уравнения плоскости и их исследование. Прямая в пространстве, взаимное расположение прямых в пространстве, плоскости и прямой в пространстве. Прямая на плоскости, уравнения прямой на плоскости, расстояние от точки до прямой на плоскости. Кривые второго порядка; вывод канонических уравнений, исследование уравнений и построение кривых. Поверхности II порядка, исследование канонических уравнений поверхностей. Метод сечений. 1

Элементы аналитической геометрии § 1. Плоскость. Имеем OXYZ и некоторую поверхность S F(x, y, z) = 0 z x (S) О y Определение 1: уравнение с тремя переменными называется уравнением поверхности S в пространстве, если этому уравнению удовлетворяют координаты каждой точки, лежащей на поверхности и не удовлетворяют координаты ни одной точки не лежащей на ней. 2

Пример. Уравнение (x - a)2 + (y - b)2 + (z - c)2 = R 2 (R > 0) определяем сферу с центром в точке C(a, b, c) и радиусом R. M M(x, y, z) – переменная точка M ϵ (S) |CM| = R C 3

Определение 2: Поверхность S называется поверхностью n-того порядка, если в некоторой декартовой системе координат она задается алгебраическим уравнением n-той степени F(x, y, z) = 0 (1) В примере (S) - окружность, поверхность второго порядка. Если S - поверхность n-того порядка, то F(x, y, z) - многочлен n-той степени относительно (x, y, z) Рассмотрим единственную поверхность 1 -го порядка – плоскость. Составим уравнение плоскости проходящей через точку M (x , y , z), с вектором нормали 4

Пусть M(x, y, z) - это произвольная (текущая) точка плоскости. M M 0 О α или в координатной форме: (2) Уравнение (2) - уравнение плоскости проходящей через точку М с данным вектором нормали. 5

D (*) (3) - полное уравнение плоскости Неполное уравнение плоскости. Если в уравнении (3) несколько коэффициентов (но не A, B, C одновременно) = 0, то уравнение называется неполным и плоскость α имеет особенности в расположении. Например если D = 0, то α проходит через начало координат. 6

Расстояние от точки М 1 до плоскости α М 1(x 1, y 1, z 1) α: M 1 d α M 0 приложим к точке M 0 K 7

- расстояние от точки M 1 до плоскости α Уравнение плоскости «в отрезках» Составим уравнение плоскости отсекающей на координатных осях ненулевые отрезки с C(0, 0, c) величинами a, b, c. В качестве возьмем B(0, b, 0) Составим уравнение для т. A с A(a, 0, 0) 8

-уравнение плоскости α "в отрезках" -уравнение плоскости, проходящей через точку А, перпендикулярно вектору нормали 9

§ 2. Общее уравнение прямой. Прямую в пространстве можно задать пересечением 2 -х плоскостей. (1) уравнение прямой Система вида (1) определяет прямую в пространстве, если коэффициенты A 1, B 1, C 1 одновременно непропорциональны A 2, B 2, C 2. 10

Параметрические и канонические уравнения прямой -произвольная точка прямой точка M M 0 Параметрическое уравнение t - параметр 11

Исключив t получим: - каноническое уравнение Система (3) определяет движение материальной точки, прямолинейное и равномерное из начального положения M 0(x 0, y 0, z 0) со скоростью в направлении вектора. 12

Угол между прямыми в пространстве. Условия параллельности и перпендикулярности. Пусть в пространстве две прямые L 1, L 2 заданы своими каноническими уравнениями: Тогда задача определения угла между этими прямыми сводится к определению угла

их направляющими векторами: Пользуясь определением скалярного произведения и выражением в координатах указанного скалярного произведения и длин векторов q 1 и q 2, получим для нахождения: 15

Условие параллельности прямых l 1 и l 2 соответствует коллинеарности q 1 и q 2, заключается в пропорциональности координат этих векторов, т. е. имеет вид: Условие перпендикулярности следует из определения скалярного произведения и его равенства нулю (при cos = 0) и имеет вид: l 1 l 2 + m 1 m 2 + n 1 n 2 = 0. 16

Угол между прямой и плоскостью: условия параллельности и перпендикулярности прямой и плоскости Рассмотрим плоскость P, заданную общим уравнением: Ах + By + Cz + D = 0, и прямую L, заданную каноническим уравнением: 17

Т. к. угол между прямой L и плоскостью П является дополнительным к углу между направляющим вектором прямой q = (l, m, n) и нормальным вектором плоскости n = (А, В, С), то из определения скалярного произведения q n = q n cos и равенства cos = sin (= 90 -), получим: 18

Условие параллельности прямой L и плоскости П (включающее в себя принадлежность L к П) эквивалентно условию перпендикулярности векторов q и n и выражается = 0 скалярного произведения этих векторов: q n = 0: Аl + Bm + Cn = 0. Условие перпендикулярности прямой L и плоскости П эквивалентно условию параллельности векторов n и q и выражается пропорциональностью координат этих векторов: 19

Условия принадлежности двух прямых к одной плоскости Две прямые в пространстве L 1 и L 2 могут: 1) пересекаться; 2) быть параллельными; 3) скрещиваться. В первых двух случаях прямые L 1 и L 2 лежат в одной плоскости. Установим условие принадлежности к одной плоскости двух прямых, заданных каноническими уравнениями: 20

Очевидно, что для принадлежности двух указанных прямых к одной плоскости необходимо и достаточно, чтобы три вектора = (х2 - х1, у2 - у1, z 2 - z 1); q 1 = (l 1, m 1, n 1) и q 2 = (l 2, m 2, n 2), были компланарны, для чего в свою очередь необходимо и достаточно, чтобы смешанное произведение указанных трех векторов = 0. 21

Записывая смешанные произведения указанных векторов в координатах получаем необходимое и достаточное условие принадлежности двух прямых L 1 и L 2 к одной плоскости: 22

Условие принадлежности прямой к плоскости Пусть есть прямая и плоскость Ах + Ву + Сz + D = 0. Эти условия имеют вид: Ах1 + Ву1 + Сz 1 + D = 0 и Аl + Вm + Сn = 0, первое из которых означает, что точка М 1(х1, у1, z 1), через которую проходит прямая, принадлежит плоскости, а второе – условие параллельности прямой и плоскости. 23

Кривые второго порядка. § 1. Понятие об уравнении линии на плоскости. Уравнение f (x, y) = 0 называется уравнением линии L в выбранной системе координат, если ему удовлетворяют координаты любой точки, лежащей на линии, и не удовлетворяют координаты ни одной точки, не лежащей на ней. 24

Src="https://present5.com/presentation/-127141277_437875303/image-25.jpg" alt="Пример: (x - a)2 + (y - b)2 = R 2 (R > 0)"> Пример: (x - a)2 + (y - b)2 = R 2 (R > 0) – уравнение окружности радиуса R и центром в точке С(a, b). Если 1.) 25

Линия L называется линией n-того порядка, если в некоторой декартовой системе координат она задается алгебраическим уравнением n-той степени относительно x и y. Мы знаем единственную линию 1 -го порядка – прямую: Ax + By + D = 0 Мы будем рассматривать кривые 2 -го порядка: эллипс, гиперболу, параболу. Общее уравнение линий 2 -ого порядка имеет вид: Ax 2 + By 2 + Cxy + Dy + Ex + F = 0 26

Эллипс (Э) Определение. Эллипс – множество всех точек плоскости, сумма расстояний которых до двух фиксированных точек плоскости F 1 и F 2, называемых фокусами, есть величина постоянная и большая расстояния между фокусами. Обозначим постоянную 2 а, расстояние между фокусами 2 с Проведем ось Х через фокусы, (а > с, а > 0, с > 0). ось Y через середины фокусного расстояния. Пусть М – произвольная точка эллипса, т. М ϵ Э r 1 + r 2 = 2 a (1), где r 1, r 2 – фокальные 27 радиусы Э.

Запишем (1) в координатной форме: (2) Это уравнение эллипса в выбранной системе координат. Упрощая (2) получим: b 2 = a 2 - c 2 (3) – каноническое уравнение эллипса. Можно показать, что (2) и (3) эквивалентны: 28

Исследование формы эллипса по каноническому уравнению 1) Эллипс – кривая 2 -го порядка 2) Симметрия эллипса. т. к. x и y входят в (3) лишь в четных степенях, то эллипс имеет 2 оси и 1 центр симметрии, которые в выбранной системе координат совпадают с выбранными осями координат и точкой О. 29

3) Расположение эллипса Т. е. весь Э расположен внутри прямоугольника, стороны которого x = ± a и y = ± b. 4) Пересечение с осями. A 1(-a; 0); A 2(a; 0); С ОХ: вершины эллипса С ОУ: B 1(0; b); B 2(0; -b); В силу симметрии эллипса рассмотрим его поведение (↓) лишь в I четверти. 30

Src="https://present5.com/presentation/-127141277_437875303/image-31.jpg" alt="Разрешив (3) относительно y получим: в I четверти x > 0 и эллипс убывает."> Разрешив (3) относительно y получим: в I четверти x > 0 и эллипс убывает. Вывод: Э – замкнутая кривая, овальная, имеющая четыре вершины. План построения Э. 1) Строим прямоугольник со сторонами 2 a, 2 b 2) Вписываем выпуклую овальную линию 31

Гипербола (Г) Определение: Г – множество всех точек плоскости, модуль разности расстояний которых до 2 -х фиксированных точек плоскости F 1 , F 2 есть величина постоянная и

Упрощая (1): (2) – каноническое уравнение Г. (1) и (2) – эквивалентны. Исследование гиперболы по каноническому уравнению 1) Г- линия 2 -го порядка 2) Г имеет две оси и один центр симметрии, которые в нашем случае совпадают с координатными осями и началом координат. 3) Расположение гиперболы. 34

Гипербола расположена вне полосы между прямыми x = a, x = -a. 4) Точки пересечения с осями. OX: OY: не имеет решений A 1(-a; 0); A 2(a; 0) – действительные вершины Г B 1(0; b); B 2(0; -b) – мнимые вершины Г 2 a – действительная ось Г 2 b – мнимая ось Г 35

5) Асимптоты гиперболы. В силу симметрии Г рассмотрим ее часть в I четверти. Разрешив (2) относительно y, получим: уравнение Г в I четверти x ≥ 0 Рассмотрим прямую: т. к. в I четверти x>0, то т. е. в I четверти при одной и той же абсциссе, ордината прямой > ординаты соответствующей точки Г, т. е. в I четверти Г лежит ниже этой прямой. Вся Г лежит внутри вертикального угла со сторонами 36

6) Можно показать, что в I ч. Г возрастает 7) План построения Г а) строим прямоугольник 2 a, 2 b б) проводим его диагонали в) отметим А 1, А 2 – действительные вершины Г и 38 впишем эти ветви

Парабола (П) Рассмотрим d (директрису) и F (фокус) на плоскости. Определение. П – множество всех точек плоскости, равноудаленных от прямой d и точки F (фокус) 39

d-директриса F-фокус XOY точка М П тогда, |MF| = |MN| (1) уравнение П, выбранной в системе координат Упрощая (1) получим y 2 = 2 px (2) – каноническое уравнение П. (1) и (2) эквивалентны 40

Исследование П по каноническому уравнению x 2=2 py x 2=-2 py y 2=2 px y 2=-2 px 41

§ 4. Цилиндры. Цилиндрические поверхности с образующими, параллельными координатным осями Через точку х линии L проведем прямую параллельную оси OZ. Поверхность, образованная этими прямыми называется цилиндрической поверхностью или цилиндром (Ц). Любая прямая параллельная оси OZ называется образующей. l - направляющая цилиндрической поверхности плоскости XOY. Z(x, y) = 0 (1) 42

Пусть М(x, y, z) – произвольная точка цилиндрической поверхности. Спроецируем ее на L. M 0 ϵ L => Z(x 0, y 0) = 0 (2) x = x 0 => Z(x, y) = 0 Mϵ Ц y = y 0 M ϵL 0 то есть координаты М удовлетворяют (1) очевидно, что если М Ц, то она не проектируется в точку М 0 ϵ L и следовательно, координаты М не будут удовлетворять уравнению (1), которое определяет Ц с образующей параллельной оси OZ в пространстве. Аналогично можно показать, что: Ф(x, z) = 0 в пространстве Ц || OY 43 (y, z) = 0 определяет в пространстве Ц || OX

Проекция пространственной линии на координатной плоскости Линию в пространстве можно задать параметрически и пересечением поверхностей. Одну и ту же линию можно задать ∩ различных поверхностей. Пусть пространственная линия L задается ∩ двух поверхностей α: S 1: Ф 1(x, y, z) = 0 S 2: Ф 2(x, y, z) = 0 уравнение L Ф 1(x, y, z) = 0 (1) Ф 2(x, y, z) = 0 Найдем проекцию L на плоскость XOY из уравнения (1) исключаем Z. Получим уравнение: Z(x, y) = 0 – в пространстве это уравнение Ц с образующей || OZ и направляющей L. 46

Проекция: L xy Z(x, y) = 0 Z=0 Поверхности второго порядка Эллипсоид – каноническое уравнение поверхности имеет вид: 1) Эллипсоид – поверхность второго порядка. 2) X, Y, Z входят в уравнение лишь в четных степенях => поверхность имеет 3 плоскости и 1 центр симметрии, которые в выбранной системе координат совпадают с координатными плоскостями и началом координат. 47

3) Расположение эллипсоида Поверхность заключена между || плоскостями с уравнениями x = a, x = -a. Аналогично т. е. вся поверхность заключена внутри прямоугольного параллелепипеда. х = ± а, y = ± b, z = ± с. Будем исследовать поверхность методом сечений – пересекая поверхность координатными плоскостями || координатным. В сечении будем получать линии, по форме которых будем судить о форме поверхности. 48

Пересечем поверхность плоскостью XOY. В сечении получим линию. - эллипс a и b – полуоси Аналогично с плоскостью YOZ -эллипс с полуосями b и с Плоскость || XOY Если h(0, с), то оси эллипса убывают от a и b до 0. 49

a = b = с - сфера Параболоиды а) Гиперболический параболоид – поверхность с каноническим уравнением: 1) Поверхность второго порядка 2) Так как x, y входят в уравнение лишь в четных степенях, то поверхность имеет плоскости симметрии, которые при данном выборе координат совпадают с 50 плоскостями XOZ, YOZ.

3) исследуем поверхность методом сечения седло пл. XOZ В сечении парабола симметричная оси OZ, восходящая. пл. YOZ 51

Src="https://present5.com/presentation/-127141277_437875303/image-53.jpg" alt="пл. ||XOY при h > 0 гиперболы, с действительной полуосью вдоль OX, при h"> пл. ||XOY при h > 0 гиперболы, с действительной полуосью вдоль OX, при h z ≥ 0, то есть, вся поверхность расположена над XOY. 4) исследуем поверхность методом сечения 53

б) Двуполостный гиперболоид 1) поверхность второго порядка 2) имеет 3 плоскости и 1 центр симметрии 3) расположение поверхности x 2 ≥ a 2 ; |x| ≥ a ; (a, b, c > 0) Поверхность состоит из двух частей, расположенных вне полосы между плоскостями с уравнениями x = a, x = -a 4) исследуем методом сечений (Самостоятельно!) 57

Конус второго порядка Конусом второго порядка называется поверхность, каноническое уравнение которой имеет вид: 1) поверхность второго порядка 2) имеет 3 плоскости и 1 центр симметрии 3) исследуем методом сечений пл. XOY 58

Src="https://present5.com/presentation/-127141277_437875303/image-59.jpg" alt="пл. ||XOY |h| –>∞ от 0 до ∞ пл. YOZ пара прямых, проходящих через"> пл. ||XOY |h| –>∞ от 0 до ∞ пл. YOZ пара прямых, проходящих через начало координат пл. XOZ пара прямых, проходящих через начало координат 59

60

С тем отличием, что вместо «плоских» графиков мы рассмотрим наиболее распространенные пространственные поверхности, а также научимся грамотно их строить от руки. Я довольно долго подбирал программные средства для построения трёхмерных чертежей и нашёл пару неплохих приложений, но, несмотря на всё удобство использования, эти программы плохо решают важный практический вопрос. Дело в том, что в обозримом историческом будущем студенты по-прежнему будут вооружены линейкой с карандашом, и, даже располагая качественным «машинным» чертежом, многие не смогут корректно перенести его на клетчатую бумагу. Поэтому в методичке особое внимание уделено технике ручного построения, и значительная часть иллюстраций страницы представляет собой handmade-продукт.

Чем отличается этот справочный материал от аналогов?

Обладая приличным практическим опытом, я очень хорошо знаю, с какими поверхностями чаще всего приходится иметь дело в реальных задачах высшей математики, и надеюсь, что эта статья поможет вам в кратчайшие сроки пополнить свой багаж соответствующими знаниями и прикладными навыками, которых в 90-95% случаев должно хватить.

Что нужно уметь на данный момент?

Самое элементарное:

Во-первых, необходимо уметь правильно строить пространственную декартову систему координат (см. начало статьи Графики и свойства функций ) .

Что вы приобретёте после прочтения этой статьи?

Бутылку После освоения материалов урока вы научитесь быстро определять тип поверхности по её функции и/или уравнению, представлять, как она расположена в пространстве, и, конечно же, выполнять чертежи. Ничего страшного, если не всё уложится в голове с 1-го прочтения – к любому параграфу по мере надобности всегда можно вернуться позже.

Информация по силам каждому – для её освоения не нужно каких-то сверхзнаний, особого художественного таланта и пространственного зрения.

Начинаем!

На практике пространственная поверхность обычно задаётся функцией двух переменных или уравнением вида (константа правой части чаще всего равна нулю либо единице) . Первое обозначение больше характерно для математического анализа, второе – для аналитической геометрии . Уравнение , по существу, является неявно заданной функцией 2 переменных, которую в типовых случаях легко привести к виду . Напоминаю простейший пример c :

уравнение плоскости вида .

– функция плоскости в явном виде .

Давайте с неё и начнём:

Распространенные уравнения плоскостей

Типовые варианты расположения плоскостей в прямоугольной системе координат детально рассмотрены в самом начале статьи Уравнение плоскости . Тем не менее, ещё раз остановимся на уравнениях, которые имеют огромное значение для практики.

Прежде всего, вы должны на полном автомате узнавать уравнения плоскостей, которые параллельны координатным плоскостям . Фрагменты плоскостей стандартно изображают прямоугольниками, которые в последних двух случаях выглядят, как параллелограммы. По умолчанию размеры можно выбрать любые (в разумных пределах, конечно), при этом желательно, чтобы точка, в которой координатная ось «протыкает» плоскость являлась центром симметрии:


Строго говоря, координатные оси местами следовало изобразить пунктиром, но во избежание путаницы будем пренебрегать данным нюансом.

(левый чертёж) неравенство задаёт дальнее от нас полупространство, исключая саму плоскость ;

(средний чертёж) неравенство задаёт правое полупространство, включая плоскость ;

(правый чертёж) двойное неравенство задаёт «слой», расположенный между плоскостями , включая обе плоскости.

Для самостоятельной разминки:

Пример 1

Изобразить тело, ограниченное плоскостями
Составить систему неравенств, определяющих данное тело.

Из-под грифеля вашего карандаша должен выйти старый знакомый прямоугольный параллелепипед . Не забывайте, что невидимые рёбра и грани нужно прочертить пунктиром. Готовый чертёж в конце урока.

Пожалуйста, НЕ ПРЕНЕБРЕГАЙТЕ учебными задачами, даже если они кажутся слишком простыми. А то может статься, раз пропустили, два пропустили, а затем потратили битый час, вымучивая трёхмерный чертёж в каком-нибудь реальном примере. Кроме того, механическая работа поможет гораздо эффективнее усвоить материал и развить интеллект! Не случайно в детском саду и начальной школе детей загружают рисованием, лепкой, конструкторами и другими заданиями на мелкую моторику пальцев. Простите за отступление, не пропадать же двум моим тетрадям по возрастной психологии =)

Следующую группу плоскостей условно назовём «прямыми пропорциональностями» – это плоскости, проходящие через координатные оси:

2) уравнение вида задаёт плоскость, проходящую через ось ;

3) уравнение вида задаёт плоскость, проходящую через ось .

Хотя формальный признак очевиден (какая переменная отсутствует в уравнении – через ту ось и проходит плоскость) , всегда полезно понимать суть происходящих событий:

Пример 2

Построить плоскость

Как лучше осуществить построение? Предлагаю следующий алгоритм:

Сначала перепишем уравнение в виде , из которого хорошо видно, что «игрек» может принимать любые значения. Зафиксируем значение , то есть, будем рассматривать координатную плоскость . Уравнения задают пространственную прямую , лежащую в данной координатной плоскости. Изобразим эту линию на чертеже. Прямая проходит через начало координат, поэтому для её построения достаточно найти одну точку. Пусть . Откладываем точку и проводим прямую.

Теперь возвращаемся к уравнению плоскости . Поскольку «игрек» принимает любые значения, то построенная в плоскости прямая непрерывно «тиражируется» влево и вправо. Именно так и образуется наша плоскость , проходящая через ось . Чтобы завершить чертёж, слева и справа от прямой откладываем две параллельные линии и поперечными горизонтальными отрезками «замыкаем» символический параллелограмм:

Так как условие не накладывало дополнительных ограничений, то фрагмент плоскости можно было изобразить чуть меньших или чуть бОльших размеров.

Ещё раз повторим смысл пространственного линейного неравенства на примере . Как определить полупространство, которое оно задаёт? Берём какую-нибудь точку, не принадлежащую плоскости , например, точку из ближнего к нам полупространства и подставляем её координаты в неравенство:

Получено верное неравенство , значит, неравенство задаёт нижнее (относительно плоскости ) полупространство, при этом сама плоскость не входит в решение.

Пример 3

Построить плоскости
а) ;
б) .

Это задания для самостоятельного построения, в случае затруднений используйте аналогичные рассуждения. Краткие указания и чертежи в конце урока.

На практике особенно распространены плоскости, параллельные оси . Частный случай, когда плоскость проходит через ось, только что был в пункте «бэ», и сейчас мы разберём более общую задачу:

Пример 4

Построить плоскость

Решение : в уравнение в явном виде не участвует переменная «зет», а значит, плоскость параллельна оси аппликат. Применим ту же технику, что и в предыдущих примерах.

Перепишем уравнение плоскости в виде из которого понятно, что «зет» может принимать любые значения. Зафиксируем и в «родной» плоскости начертим обычную «плоскую» прямую . Для её построения удобно взять опорные точки .

Поскольку «зет» принимает все значения, то построенная прямая непрерывно «размножается» вверх и вниз, образуя тем самым искомую плоскость . Аккуратно оформляем параллелограмм разумной величины:

Готово.

Уравнение плоскости в отрезках

Важнейшая прикладная разновидность. Если все коэффициенты общего уравнения плоскости отличны от нуля , то оно представимо в виде , который называется уравнением плоскости в отрезках . Очевидно, что плоскость пересекает координатные оси в точках , и большое преимущество такого уравнения состоит в лёгкости построения чертежа:

Пример 5

Построить плоскость

Решение : сначала составим уравнение плоскости в отрезках. Перебросим свободный член направо и разделим обе части на 12:

Нет, здесь не опечатка и все дела происходят именно в пространстве! Исследуем предложенную поверхность тем же методом, что недавно использовали для плоскостей. Перепишем уравнение в виде , из которого следует, что «зет» принимает любые значения. Зафиксируем и построим в плоскости эллипс . Так как «зет» принимает все значения, то построенный эллипс непрерывно «тиражируется» вверх и вниз. Легко понять, что поверхность бесконечна :

Данная поверхность называется эллиптическим цилиндром . Эллипс (на любой высоте) называется направляющей цилиндра, а параллельные прямые, проходящие через каждую точку эллипса называются образующими цилиндра (которые в прямом смысле слова его и образуют). Ось является осью симметрии поверхности (но не её частью!).

Координаты любой точки, принадлежащей данной поверхности, обязательно удовлетворяют уравнению .

Пространственное неравенство задаёт «внутренность» бесконечной «трубы», включая саму цилиндрическую поверхность, и, соответственно, противоположное неравенство определяет множество точек вне цилиндра.

В практических задачах наиболее популярен частный случай, когда направляющей цилиндра является окружность :

Пример 8

Построить поверхность, заданную уравнением

Бесконечную «трубу» изобразить невозможно, поэтому художества ограничиваются, как правило, «обрезком».

Сначала удобно построить окружность радиуса в плоскости , а затем ещё пару окружностей сверху и снизу. Полученные окружности (направляющие цилиндра) аккуратно соединяем четырьмя параллельными прямыми (образующими цилиндра):

Не забываем использовать пунктир для невидимых нам линий.

Координаты любой точки, принадлежащей данному цилиндру, удовлетворяют уравнению . Координаты любой точки, лежащей строго внутри «трубы», удовлетворяют неравенству , а неравенство задаёт множество точек внешней части. Для лучшего понимания рекомендую рассмотреть несколько конкретных точек пространства и убедиться в этом самостоятельно.

Пример 9

Построить поверхность и найти её проекцию на плоскость

Перепишем уравнение в виде из которого следует, что «икс» принимает любые значения. Зафиксируем и в плоскости изобразим окружность – с центром в начале координат, единичного радиуса. Так как «икс» непрерывно принимает все значения, то построенная окружность порождает круговой цилиндр с осью симметрии . Рисуем ещё одну окружность (направляющую цилиндра) и аккуратно соединяем их прямыми (образующими цилиндра). Местами получились накладки, но что делать, такой уж наклон:

На этот раз я ограничился кусочком цилиндра на промежутке и это не случайно. На практике зачастую и требуется изобразить лишь небольшой фрагмент поверхности.

Тут, к слову, получилось 6 образующих – две дополнительные прямые «закрывают» поверхность с левого верхнего и правого нижнего углов.

Теперь разбираемся с проекцией цилиндра на плоскость . Многие читатели понимают, что такое проекция, но, тем не менее, проведём очередную физкульт-пятиминутку. Пожалуйста, встаньте и склоните голову над чертежом так, чтобы остриё оси смотрело перпендикулярно вам в лоб. То, чем с этого ракурса кажется цилиндр – и есть его проекция на плоскость . А кажется он бесконечной полосой, заключенным между прямыми , включая сами прямые. Данная проекция – это в точности область определения функций (верхний «жёлоб» цилиндра), (нижний «жёлоб»).

Давайте, кстати, проясним ситуацию и с проекциями на другие координатные плоскости. Пусть лучи солнца светят на цилиндр со стороны острия и вдоль оси . Тенью (проекцией) цилиндра на плоскость является аналогичная бесконечная полоса – часть плоскости , ограниченная прямыми ( – любое), включая сами прямые.

А вот проекция на плоскость несколько иная. Если смотреть на цилиндр из острия оси , то он спроецируется в окружность единичного радиуса , с которой мы начинали построение.

Пример 10

Построить поверхность и найти её проекции на координатные плоскости

Это задача для самостоятельного решения. Если условие не очень понятно, возведите обе части в квадрат и проанализируйте результат; выясните, какую именно часть цилиндра задаёт функция . Используйте методику построения, неоднократно применявшуюся выше. Краткое решение, чертёж и комментарии в конце урока.

Эллиптические и другие цилиндрические поверхности могут быть смещены относительно координатных осей, например:

(по знакомым мотивам статьи о линиях 2-го порядка ) – цилиндр единичного радиуса с линией симметрии, проходящей через точку параллельно оси . Однако на практике подобные цилиндры попадаются довольно редко, и совсем уж невероятно встретить «косую» относительно координатных осей цилиндрическую поверхность.

Параболические цилиндры

Как следует из названия, направляющей такого цилиндра является парабола .

Пример 11

Построить поверхность и найти её проекции на координатные плоскости.

Не мог удержаться от этого примера =)

Решение : идём проторенной тропой. Перепишем уравнение в виде , из которого следует, что «зет» может принимать любые значения. Зафиксируем и построим обычную параболу на плоскости , предварительно отметив тривиальные опорные точки . Поскольку «зет» принимает все значения, то построенная парабола непрерывно «тиражируется» вверх и вниз до бесконечности. Откладываем такую же параболу, скажем, на высоте (в плоскости) и аккуратно соединяем их параллельными прямыми (образующими цилиндра ):

Напоминаю полезный технический приём : если изначально нет уверенности в качестве чертежа, то линии сначала лучше прочертить тонко-тонко карандашом. Затем оцениваем качество эскиза, выясняем участки, где поверхность скрыта от наших глаз, и только потом придаём нажим грифелю.

Проекции.

1) Проекцией цилиндра на плоскость является парабола . Следует отметить, что в данном случае нельзя рассуждать об области определения функции двух переменных – по той причине, что уравнение цилиндра не приводимо к функциональному виду .

2) Проекция цилиндра на плоскость представляет собой полуплоскость , включая ось

3) И, наконец, проекцией цилиндра на плоскость является вся плоскость .

Пример 12

Построить параболические цилиндры:

а) , ограничиться фрагментом поверхности в ближнем полупространстве;

б) на промежутке

В случае затруднений не спешим и рассуждаем по аналогии с предыдущими примерами, благо, технология досконально отработана. Не критично, если поверхности будут получаться немного корявыми – важно правильно отобразить принципиальную картину. Я и сам особо не заморачиваюсь над красотой линий, если получился сносный чертёж «на троечку», обычно не переделываю. В образце решения, кстати, использован ещё один приём, позволяющий улучшить качество чертежа;-)

Гиперболические цилиндры

Направляющими таких цилиндров являются гиперболы . Этот тип поверхностей, по моим наблюдениям, встречается значительно реже, чем предыдущие виды, поэтому я ограничусь единственным схематическим чертежом гиперболического цилиндра :

Принцип рассуждения здесь точно такой же – обычная школьная гипербола из плоскости непрерывно «размножается» вверх и вниз до бесконечности.

Рассмотренные цилиндры относятся к так называемым поверхностям 2-го порядка , и сейчас мы продолжим знакомиться с другими представителями этой группы:

Эллипсоид. Сфера и шар

Каноническое уравнение эллипсоида в прямоугольной системе координат имеет вид , где – положительные числа (полуоси эллипсоида), которые в общем случае различны . Эллипсоидом называют как поверхность , так и тело , ограниченное данной поверхностью. Тело, как многие догадались, задаётся неравенством и координаты любой внутренней точки (а также любой точки поверхности) обязательно удовлетворяют этому неравенству. Конструкция симметрична относительно координатных осей и координатных плоскостей:

Происхождение термина «эллипсоид» тоже очевидно: если поверхность «разрезать» координатными плоскостями, то в сечениях получатся три различных (в общем случае)

В пространстве аналитическая геометрия изучает поверхности, которые в прямоугольных декартовых координатах определяются алгебраическими уравнениями первой, второй и т.д. степени относительно X,Y,Z:

Ax+By+Cz+D=0 (1)

А x²+By²+Cz²+2Dxy+2Exz+2Fyz+2Mx+2Ny+2Lz+K=0 (2)

и т.п. Порядок уравнения называется порядком поверхности им определяемой. Мы уже видели, что уравнение первого порядка (линейное) (1) всегда задаёт плоскость - это единственная поверхность первого порядка. Поверхностей второго порядка уже много. Рассмотрим наиболее важные из них.

§2. Цилиндрические поверхности с образующими, параллельными одной из координатных осей.

Пусть в плоскости XОY, например, задана некоторая линия L, её уравнение есть F(x,y)=0 (1) . Тогда множество прямых, параллельных оси oz (образующие) и проходящих через точки на L, образуют поверхность S, называемую цилиндрической поверхностью.

Покажем, что уравнение (1), не содержащее переменной z, и есть уравнение этой цилиндрической поверхности S. Возьмём произвольную точку М(x,y,z), принадлежащую S. Пусть образующая, проходя через М пересекает L в точке N. Точка N имеет координаты N(x,y,0), они удовлетворяют уравнению (1), т.к. (·)N принадлежит L. Но тогда и координаты (x,y,z,) удовлетворяют (1), т.к. оно не содержит z. Значит, координаты любой точки цилиндрической поверхности S удовлетворяют уравнению (1). Значит, F(x,y)=0 - уравнение этой цилиндрической поверхности. Кривая L называется направляющей (кривой) цилиндрической поверхности. Заметим, что в пространственной системе L должна задаваться, вообще-то, двумя уравнениями F(x,y)=0 , z=0, как линия пересечения.

Примеры:


Направляющими в плоскости хоу являются эллипс, парабола, гипербола. Очевидно, уравнения F=(y,z)=0 и F(x,z)=0 задают соответственно цилиндрические поверхности с образующими параллельными оси OX и OY. Их направляющие лежат в плоскостях YOZ и XOZ соответственно.

Замечание. Цилиндрическая поверхность не обязательно является поверхностью второго порядка. Например, есть цилиндрическая поверхность 3го порядка, а уравнениеy=sin(x) задаёт синусоидальный цилиндр, которому никакого порядка не приписывают, это вообще, не алгебраическая поверхность.

§3. Уравнение поверхности вращения.

Некоторые поверхности 2го порядка являются поверхностями вращения. Пусть в плоскости YOZ лежит некоторая кривая L F(y,z)=0(1). Выясним, каково будет уравнение поверхности S, образованной вращением кривой (1) вокруг оси oz.

Возьмем на поверхности S произвольную точку M(x,y,z). Ее можно считать полученной из (.) N принадлежащей L , тогда аппликаты точек M и N равны (=z). Ордината точки N является тут радиусом вращения, потому .Но С(0,0,z) и потому . Но точка N лежит на кривой и поэтому её координаты ей удовлетворяют. Значит (2) . Уравнению (2) удовлетворяют координаты поверхности вращения S. Значит (2) и есть уравнение поверхности вращения. Знаки «+» или «-» берутся в зависимости от того в какой части плоскости YOZ размещается кривая (1), где у>0 или .

Итак, правило: Чтобы найти уравнение поверхности, образованной вращением кривой L вокруг оси OZ, нужно в уравнении кривой заменить переменную у

Аналогично составляются уравнения поверхностей вращения вокруг оси OX и OY.

§7. Плоскость как поверхность первого порядка. Общее уравнение плоскости. Уравнение плоскости, проходящей через данную точку перпендикулярно заданному вектору Введѐм в пространстве прямоугольную декартову систему координат Oxyz и рассмотрим уравнение первой степени (или линейное уравнение) относительно x, y, z: (7.1) Ax  By  Cz  D  0, A2  B2  C 2  0 . Теорема 7.1. Любая плоскость может быть задана в произвольной прямоугольной декартовой системе координат уравнением вида (7.1). Точно так же, как и в случае прямой на плоскости, справедлива теорема, обратная теореме 7.1. Теорема 7.2. Любое уравнение вида (7.1) задаѐт в пространстве плоскость. Доказательство теорем 7.1 и 7.2 можно провести аналогично доказательству теорем 2.1, 2.2. Из теорем 7.1 и 7.2 следует, что плоскость и только она является поверхностью первого порядка. Уравнение (7.1) называется общим уравнением пло-скости. Его  коэффициенты A, B, C трактуются геометрически как координаты вектора n , перпендикулярного плоскости, определяемой этим уравнением. Этот вектор  n(A, B, C) называется вектором нормали к данной плоскости. Уравнение (7.2) A(x  x0)  B(y  y0)  C (z  z0)  0 при всевозможных значениях коэффициентов A, B, C задаѐт все плоскости, про-ходящие через точку M 0 (x0 , y0 , z0) . Оно называется уравнением связки плоскостей. Выбор конкретных значений A, B, C в (7.2) означает выбор плоскости P из связки, проходящей через точку M 0 перпендикулярно  заданному вектору n(A, B, C) (рис.7.1). Пример 7.1. Написать уравнение плоскости Р, проходящей через точку   А(1, 2, 0) параллельно векторам a  (1, 2,–1), b  (2, 0, 1) .    Вектор нормали n к Р ортогонален данным векторам a и b (рис. 7.2),   поэтому за n можно взять их векторное n произведение: А    Р i j k    2 1  1 1   2 n  a  b  1 2  1  i  j 2 1  k 12 0  0 1 2 0 1 n   a    b 2i  3 j  4k . Подставим координаты Рис. 7.2. К примеру 7.1 P M0  точки M 0 и вектора n в уравнение (7.2), получим Рис. 7.1. К уравнению уравнение плоскости связки плоскостей P: 2(x  1)  3(y  2)  4z  0 или P: 2x  3y  4z  4  0 .◄ 1 Если два из коэффициентов A, B, C уравнения (7.1) равны нулю, оно задаѐт плоскость, параллельную одной из координатных плоскостей. Например, при A  B  0 , C  0 – плоскость P1: Cz  D  0 или P1: z   D / C (рис. 7.3). Она па-раллельна плоскости Oxy, ибо еѐ вектор  нормали n1(0, 0, C) перпендикулярен этой плоскости. При A  C  0 , B  0 или B  C  0 , A  0 уравнение (7.1) определяет плоскости P2: By  D  0 и P3: Ax  D  0 , параллельные координатным плоскостям Oxz и Oyz, так как   их векторы нормали n2(0, B, 0) и n3(A, 0, 0) им перпендикулярны (рис. 7.3). Если только один из коэффициентов A, B, C уравнения (7.1) равен нулю, то оно задаѐт плоскость, параллельную одной из координатных осей (или еѐ со-держащую, если D  0). Так, плоскость P: Ax  By  D  0 параллельна оси Oz, z z  n1  n  n2 P1 L P O  n3 x y O P2 y P3 x Рис. 7.4. Плоскость P: Ax  B y  D  0 , параллельная оси Oz Рис. 7.3. Плоскости параллельные плоскостям координат  поскольку еѐ вектор нормали n(A, B, 0) перпендикулярен оси Oz. Заметим, что она проходит через прямую L: Ax  By  D  0 , лежащую в плоскости Oxy (рис. 7.4). При D  0 уравнение (7.1) задаѐт плоскость, проходящую через начало координат. Пример 7.2. Найти значения параметра , при которых уравнение x  (2  2) y  (2    2)z    3  0 определяет плоскость P: а) параллельную одной из координатных плоскостей; б) параллельную одной из координатных осей; в) проходящую через начало координат. Запишем данное уравнение в виде x  (  2) y  (  2)(  1) z    3  0 . (7.3) При любом значении  уравнение (7.3) определяет некоторую плоскость, так как коэффициенты при x, y, z в (7.3) не обращаются в нуль одновременно. а) При   0 уравнение (7.3) определяет плоскость P , параллельную плоскости Oxy , P: z  3 / 2 , а при   2 оно определяет плоскость P , 2 параллельную плоскости Oyz , P: x  5/ 2 . Ни при каких значениях  плоскость P , определяемая уравнением (7.3), не параллельна плоскости Oxz , поскольку коэффициенты при x, z в (7.3) не обращаются в нуль одновременно. б) При   1 уравнение (7.3) определяет плоскость P , параллельную оси Oz , P: x  3y  2  0 . При остальных значениях параметра  оно не определяет плоскости, параллельной только одной из координатных осей. в) При   3 уравнение (7.3) определяет плоскость P , проходящую через начало координат, P: 3x  15 y  10 z  0 . ◄ Пример 7.3. Написать уравнение плоскости Р, проходящей через: а) точку M (1,  3, 2) параллельно плоскости ось Оху; б) ось Ох и точку M (2,  1, 3) .   а) За вектор нормали n к Р здесь можно взять вектор k (0, 0,1) – орт оси Oz, так как он перпендикулярен плоскости Оху. Подставим координаты точки  M (1,  3, 2) и вектора n в уравнение (7.2), получим уравнение плоскости P: z 3  0.   б) Вектор нормали n к Р ортогонален векторам i (1, 0, 0) и OM (2,  1, 3) ,  поэтому за n можно взять их векторное произведение:    i j k       n  i  OM  1 0 0   j 12 03  k 12 01   3 j  k . 2 1 3  Подставим координаты точки О и вектора n в уравнение (7.2), получим уравнение плоскости P:  3(y  0)  (z  0)  0 или P: 3 y  z  0 .◄ 3